
Multimodal User Interfaces for Smart Environments:
The Multi-Access Service Platform
Marco Blumendorf, Sebastian Feuerstack, Sahin Albayrak

DAI-Labor, TU-Berlin
Ernst-Reuter-Platz 7, D-10587 Berlin

{Marco.Blumendorf, Sebastian.Feuerstack, Sahin.Albayrak}@DAI-Labor.de

ABSTRACT
User interface models are a well accepted approach to handle
increasing user interface complexity. The approach presented in
this paper utilizes user interface models at runtime to provide a
basis for user interface distribution and synchronization. Task and
domain model synchronize workflow and dynamic content across
devices and modalities. A cooking assistant serves as example
application to demonstrate multimodality and distribution.
Additionally a debugger allows the inspection of the underlying
user interface models at runtime.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation]: User interfaces;
D.2.2 [Software Engineering]: Design Tools and Techniques-
User Interfaces; H.1.2 [Models and Principles]: User/Machine
Systems-Human factors; H.5.2 [Information Interfaces and
Presentation]: User Interfaces-graphical user interfaces,
interaction styles, input devices and strategies, voice I/O.

General Terms
Design, Human Factors

Keywords
Model-based user interfaces, runtime interpretation, Smart home
environments, ubiquitous computing, multimodal interaction,
human-computer interaction, interface design, usability

1. INTRODUCTION
Ambient environments comprising numerous networked
interaction devices challenge interface developers to provide
approaches that exploit these new capabilities. In this paper we
describe an approach that addresses the need to adapt the interface
to the environment. A runtime system, utilizing user interface
models supports multimodal interaction and user interface
distribution. The next section gives an overview of the developed
system, followed by the description of an example, demonstrating

the features.

2. THE MULTI-ACCESS SERVICE
PLATFORM
The Multi-Access Service Platform (MASP) is a runtime system
we created to address deployment and runtime issues when
developing interaction in smart environments. The system focuses
on multimodal applications and follows a model-based approach.
Based on a user interface model, the system allows controlling
multiple user interfaces and is able to deliver the partial UI
artifacts to different devices supporting different interaction
modalities. Based on the runtime interpretation of the model the
MASP is able to synchronize the distributed parts of such user
interfaces (UIs).
The underlying user interface model is based on the ideas of the
cameleon reference framework [2] and similarly separates
multiple levels of abstraction. A task- and domain model define
the workflow and dynamic data of the application, providing the
basic information required for the interaction. The actual user
interface is defined via templates providing final UI code (i.e.
HTML and VoiceXML).
The task tree [4] defines the application workflow using the
Concurrent Task Tree (CTT) notation [5]. Similar to [3] this
allows assembling user interfaces from multiple parts based on
the enabled task set. Objects, related to the identified tasks are
defined as domain model allowing the exchange of information
between tasks and with the backend. An object store holds the
defined objects as dynamic content at runtime and thus provides
access to the actual information for front- and backend. The
connection to involved backend services is defined by a service
model used to call the required backend services. The user
interface itself is currently defined via multiple monomodal
velocity (http://velocity.apache.org) templates associated with
each task. The templates define the actual user interface, and
incorporate the dynamic information from the object store. The
selection of the active templates is carried out based on the active
interaction tasks. The utilization of multiple monomodal interface
templates allows forming a multimodal user interface. Interactions
received via one of the modalities are interpreted and mapped
onto domain object manipulations or task completions. In
combination with interaction channels [1] that can be set up to
interaction devices on the fly to render and transport the results of
the templates, task completions and object manipulations are
reflected in all active presentations, which allows the
synchronization of the different monomodal UI parts via the
underlying model.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

http://velocity.apache.org/

Figure 1: The MASP Debugger

Utilizing models at runtime also allows the inspection of the state
of the application stored as dynamic part of the models. Figure 1
shows the debugger that can be used to browse through the actual
state of the application. The tool connects to the runtime system
and allows to inspect and alter the models for prototyping or
direct manipulation of the running application. To evaluate the
approach we built an application using the multimodal interaction
and distribution capabilities the described approach provides.

3. THE COOKING ASSISTANT
We developed a cooking assistant (CA) (Figure 2) as example
application, to evaluate our runtime system. The CA has then also
been deployed as part of an ambient living testbed setup at the
DAI-Labor at the TU-Berlin as part of the Service Centric Home
project (www.sercho.de). The CA is based on three interaction
steps. First the user selects a recipe, from the results of a search
according to criteria given by the user. Afterwards an interactive
dialog queries the user about what ingredients are available.
Based on this information a shopping list is generated. Finally the
CA guides step by step through the cooking process.
The whole application can be controlled via mouse, keyboard,
touchscreen or voice and feedback from the system is provided
via a graphical user interface as well as via voice output. The
combination of the different modalities is determined based on the
availability of the required interaction resources. Thus, the
interactive querying of the availability of the ingredients can
either be done via voice or via the graphical user interface.
However, as the user has to move freely around in the kitchen,
using voice interaction seems to be more appropriate in this case.
Once the shopping list has been generated, the user can migrate
the list to a mobile device using the distribution feature of the
MASP. This allows to continue interaction during shopping, by
marking the bough ingredients. Once shopping is done, the user
indicates that, and seamlessly continues with the cooking
assistant. The CA then guides step by step through the cooking
process (Figure 2) and the user is able to control kitchen devices
(e.g. turn on the oven) and request additional explanations in form
of a video for each step. Device and video control as well as

Figure 2: The graphical user interface of the cooking aid

navigation between steps are possible via voice or the graphical
user interface. Ingredients and step details are presented visually
and via voice output. Voice input can be realized either via
speaker dependent dictation or via speaker independent
recognition. A small chat style interaction application allows text
input via dictation or the keyboard, e.g. to realize Wizard of Oz
experiments.
The cooking assistant serves as example to demonstrate
multimodal interaction based on voice and speech via the MASP.
It shows how different channels and modalities can be added and
removed on the fly. The shopping list scenario illustrates the
capability to distribute the developed user interfaces across
multiple devices while keeping the different parts synchronized.

4. ACKNOWLEDGMENTS
We thank the German Federal Ministry of Economics and
Technology for supporting our work as part of the Service Centric
Home project in the Next Generation Media program.

5. REFERENCES
[1] Blumendorf, M., Feuerstack, S. Albayrak, S. Multimodal

user interaction in smart environments: Delivering
distributed user interfaces. European Conference on Ambient
Intelligence: Workshop proceedings, 2007.

[2] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L., Vanderdonckt, J. A unifying reference
framework for multi-target user interfaces. Interacting with
Computers, 2003.

[3] Clerckx, T., Vandervelpen, C., Luyten, K., Coninx, K. A
task-driven user interface architecture for ambient intelligent
environments. In Proceedings of IUI '06.

[4] Feuerstack, S., Blumendorf, M. and Albayrak, S.
Prototyping of multimodal interactions for smart
environments based on task models. European Conference
on Ambient Intelligence: Workshop proceedings, 2007.

[5] Paternò, F.. Model-Based Design and Evaluation of
Interactive Applications. Springer 1999.

http://www.sercho.de/

Hard- / Software Requirements
The proposed demonstration is based on a Java application running inside a Tomcat webcontainer. Additionally Dragon Natural Speaking
is used for voice interaction. Voice Output is provided via a Voice Genie Server running externally.
Thus, the hardware requirements are:

• a Java enabled PC running a Tomcat webserver

• windows operating system is preferred

• soundcard, microphone and speakers are required for voice interaction

• an Internet connection that supports a VPN tunnel to a server located at the Technical University of Berlin is required for speech
output

The software requirements are:

• Java version 6

• Windows operating system

• Tomcat Webcontainer version 5 or 6

• Dragon Natural Speaking

In case of the acceptance of our proposal we would be happy to bring all the needed equipment in form of a laptop with the complete
system installed.

	1. INTRODUCTION
	2. THE MULTI-ACCESS SERVICE PLATFORM
	3. THE COOKING ASSISTANT
	4. ACKNOWLEDGMENTS
	5. REFERENCES
	 Hard- / Software Requirements

