
Executable Models for Human-Computer Interaction

Marco Blumendorf, Grzegorz Lehmann, Sebastian Feuerstack, Sahin Albayrak
DAI-Labor, TU-Berlin

Ernst-Reuter-Platz 7, D-10587 Berlin
firstname.lastname@DAI-Labor.de

Abstract. Model-based user interface development is grounded on the idea to
utilize models at design time to derive user interfaces from the modeled
information. There is however an increasing demand for user interfaces that
adapt to the context of use at runtime. The shift from design time to runtime
means, that different design decisions are postponed until runtime. Utilizing
user interface models at runtime provides a possibility to utilize the same basis
of information for these postponed decisions. The approach we are following
goes even one step further. Instead of only postponing several design decisions,
we aim at the utilization of stateful and executable models at runtime to
completely express the user interaction and the user interface logic in a model-
based way.

Keywords: human-computer interaction, model-based user interfaces, runtime
interpretation

1. Introduction

Model-based software development is becoming more and more popular these days
and has been identified as suitable to deal with the increasing complexity of software
systems developers have to cope with. While UML made the idea of modeling
popular by providing a common language to exchange concepts between developers,
the Meta-Object Facility (MOF) and the Model-Driven Architecture (MDA) of the
Object Management Group (OMG) provide the key concepts for the widespread
utilization of model-based software engineering. However, with the advent of
technologies like UML Actions or the Business Process Modeling Language (BPML)
the focus of the modeling approaches shifts from static systems to dynamic systems
and executable models. While the original static models were mainly able to present
snapshot views of the systems under study and could thus only provide answers to
“what is” kinds of questions, dynamic models give access to information that changes
over time and are thus also able to answer “what has been” or “what if” kinds of
questions (see also [4]). Executable models support this approach by providing the
logic that defines the dynamic behavior as part of the model. Their structure will be
explained in more detail in the remainder of this paper.

The ability to model complex software systems has recently also regained more
attention as a technology capable of handling the increasing complexity of user
interfaces (UIs). Rising demands for dynamic UIs that adapt to the context-of-use and

thus user preferences, multiple devices, the surrounding environment or even multiple
modalities, induce the need for new ways to express such characteristics. Model-
based approaches as described in [14, 11] address these challenges by utilizing
models to support the user interface development process and provide the means to
derive multiple consistent user interfaces from a (sometimes multi-level) UI model.
Additionally approaches that utilize UI models at runtime [7, 10] addressed specific
development issues. There is however still the lack of a well accepted common User
Interface Description Language (UIDL) as different approaches focus on different
aspects. UsiXML currently seems to be the most feasible candidate for such a
language.

In this paper we present an approach that facilitates the development of User
Interface Management Systems that address:

• supporting different UIDLs and models by introducing a common meta-layer
• the consideration of the predictive as well as the effective context of use [5]
• the specification of syntax and semantics as part of a model
• support for the easy extension of systems based on the coupling of multiple

models
• the unification of design models and the runtime data structures of interactive

systems
The model-based approach we describe in the following therefore facilitates the

utilization of “executable” user interface models at runtime. Although we propose a
set of models, the general system allows the utilization of various UIDLs on different
levels of abstraction. The approach therefore addresses the definition of a meta-meta-
model providing building blocks for meta-models that also contain the model
semantics. Furthermore the system allows the developer to monitor, maintain,
manipulate and extend interactive applications at runtime and thus manage the
continuously changing requirements of user interface development.

After introducing the current state of the art in the next section, we give an
introduction to the idea of executable models, providing the possibility to combine
syntax and semantic with state information to support direct model execution. Next
we present a meta-meta-model, distinguishing definition-, situation- and execution
parts our executable models are comprised of. Following that section, we give an
overview of the meta-models and the mapping meta-model we utilize for the UI
development and the underlying concepts. We then introduce the architecture of our
runtime system and elaborate on the possible applications of the approach. We
describe how the development process can be supported by the ability to directly
modify the models at runtime using Eclipse and EMF, which also allows runtime
inspection, modification and debugging of the models.

2. State of The Art

The recent shift towards model-based software development aims at solutions to cope
with the increasing complexity of current and future systems. While UML made the
idea of modeling popular by providing a common language to exchange concepts
between developers, MOF and MDA provide the key concepts for the utilization of

model-based software engineering. Technologies like Executable UML, UML
Actions or BPML focus on the shift from static- to dynamic systems and executable
models. These developments also influence user interface research. The current state
of the art in model-based user interface development shows the need for a common
language [11] and a tendency towards a common understanding of the new challenges
and approaches [2, 1]. However, there are also approaches to build architectures, tools
and methodologies to support the designer during the development as well as the
creation of adaptive user interfaces and their adaptation at runtime. [10] for example
deals with the execution of CTT-based user interface models and [7] presents a
runtime system that targets the creation of context-aware user interfaces.

Sottet et al. [19] propose keeping the models alive at runtime to make the design
rationale available. This means, that the final UI code should not be generated at
design-time, but at runtime, taking the context adaptations into account. Demeure et
al. [8] presented the Comets, which are prototypical user interface components
capable of adaptations due to the application of models at runtime. Preserving the
models at runtime opened the possibility for the implementation of plasticity-enabling
features like their Meta-UI. Yet, the black-box nature of the Comets seems
problematic at runtime, as the system has no indications about a Comet’s inner state.
Clerckx et al. [6] extend the DynaMo-AID design process by context data evaluated
at runtime, supporting UI migration and distribution. Their approach allows the
designer to define context-dependent information in the models. However, although
the models are then interpreted dynamically, their adaptation at runtime is not
possible. To support the linking of multiple models, Sottet et al. [20] propose to
model transformations which should also be available at runtime. However, none of
the solutions we are aware of enables to identify the common components of multiple
models and links between the models, which could pave the road to interoperability
between different UIDLs. In our approach, we utilize executable models to derive
user interfaces at runtime. We define a meta-meta-model and conceptually introduce a
mapping meta-model. This allows us to connect different models and concepts to
build advanced user interfaces.

3. Executable Models

Recent developments in the model-based user interface development community
show the increasing importance of models as a basis for development support and also
as basis at runtime. Currently there is still a focus on the usage of static models,
providing (only) a snapshot of the system under study at a given point in time.
Research in model-driven engineering of user interfaces has brought up various
approaches to use models for the derivation of user interfaces for different purposes.
However, future interactive systems are required to adapt to different contexts at
runtime and thus deriving multiple UIs at design time does not seem to be feasible
anymore. Keeping the model(s) at runtime allows postponing design decisions to
runtime and thus performing adaptations to the runtime circumstances rather than
predicting all possible context situations at design time. We think that the executable
models approach introduced in this section can support a more extensive usage of

models at runtime. In contrast to common static models, executable models provide
the logic that defines the dynamic behavior as part of the model, which makes them
complete in the sense that they have “everything required to produce a desired
functionality of a single problem domain” [12]. They provide the capabilities to
express static elements as well as behavior and evolution of the system in one single
model. Executable models run and have similar properties as program code. In
contrast to code however, executable models provide a domain-specific level of
abstraction which greatly simplifies the communication with the user or customer.
Combining the idea of executable models with dynamic elements as part of the model
gives the model an observable and manipulable state. Besides the initial state of a
system and the processing logic, dynamic executable models also make the model
elements that change over time explicit and support the investigation of the state of
the execution at any point in time. We can thus describe dynamic executable models
as models that provide a complete view of the system under study over time.

3.1 A Meta-Meta-Model

Combining the initial state of the system, the dynamic model elements that change
over time and the processing logic in one model, leads to the need to clearly
distinguish between the different elements. We thus distinguish between definition-,
situation- and execution elements in the following. A similar classification has also
been identified by Breton and Bézivin [4].

Definition Elements define the static structure of the model and thus denote the
constant elements that do not change over time. Definition elements are defined by
the designer and represent the constants of the model, invariant over time.

Situation Elements define the current state of the model and thus identify those
elements that do change over time. Situation elements are changed by the processing
logic of the application when making a transition from one state to another one. Any
change to a situation element can trigger an execution element.

Execution Elements define the interpretation process of the model, in other words
the transitions from one state to another. In this sense execution elements are
procedures or actions altering the situation elements of a model. Execution elements
also provide the entry points for data exchange with entities outside of the model.
Defining execution elements as part of the model allows the incorporation of semantic
information and the interpretation process as part of the model itself and thus ensures
consistency and an unambiguous interpretation. This approach makes an executable
model complete and self-contained.

Distinguishing these elements leads to the meta-meta-model of dynamic executable
models depicted in Figure 1. The meta-meta-model provides a more formal view of
executable models and summarizes the common concepts the models are based on. It
is positioned at M3 layer in the MOF Metadata Architecture [15] (see also Figure 4).
The clear separation of the elements provides clear boundaries for the designer, only
working with the definition elements and the system architect, providing the meta-
models. A definition element as the basic element finally aggregates situation- and
execution elements that describe and change situations for a given definition element.
Using such models in a prescriptive way (constructive rather than descriptive

Figure 1: Meta-Meta-Model of Dynamic Executable Models

modeling) allows defining systems that evolve over time, reason about the past and
predict future behavior. Dynamic models are often used to build self-adaptive
applications, as for example Rohr et al. [17] describe. In this context, the role of the
models is often that of monitoring the system. In the following we illustrate the
implications of the meta-meta-model by introducing the realization of a CTT-based
task-meta-model as executable meta-model using the Eclipse Modeling Framework.

3.2 Modeling with EMF

For our current implementation we have utilized the Eclipse Modeling Framework
(EMF), which is a modeling and code generation framework integrated into the
Eclipse IDE. EMF provides means to define meta-models, create models and
appropriate editors. Beyond that, for each meta-model EMF is capable of generating
Java class structures representing it. These can then be enriched by a programmer just
as usual Java code can. This way it is possible to add execution logic into the meta-
model in form of Java code fragments.
 ECore is the meta-model of EMF and thus the meta-meta-model of all models
defined in EMF. It resides on the same layer as the meta-meta-model of the
executable models. Choosing EMF as the implementation technology makes it
necessary to map definition-, situation- and execution elements - the entities of our
meta-meta-model - to entities in the ECore meta-meta-model. In our approach, the
definition elements are represented by EClasses in ECore. The situation elements find
their representation in the ECore’s EStructuralFeatures although not all
EStructuralFeatures are situation elements as some attributes of an element
(EAttribute) may describe runtime state data. The differentiation is therefore done by
the adoption of an extra EAnnotation. Finally, the execution elements are in ECore
expressed as EOperations, which allows adding execution logic into a meta-model in
form of Java code fragments. In Java the execution logic is defined within methods
and these are represented by EOperations within ECore.

3.3 Executable Task Models

In the following we use the task model as an example to illustrate the executable
models, the usage of the meta-meta-model and the realization with EMF. The task
model we use is based on the CTT notation which is well known in model-based UI
development. Task models are also known to be executable [10] and define the tasks

the user has to accomplish and their temporal relations. They thus provide an
overview of the workflow of the application. To be able to utilize the CTT-based task
model for our purposes we extended the static part of the CTT meta-model with the
state information needed to reflect the state of the execution in the model. We
introduce attributes for each task, identifying the state of the task and thus the
situation elements of the model.

Figure 2: The Task-Meta-Model in EMF

Figure 2 shows the EMF meta-model structure for task models. As one can see in
the graphic, every task model is comprised of a root task with a set of children tasks.
Each task is a definition element which also comprises situation elements. While
name, type, description, relation (temporal relation to neighbor task) and the iterative
flag are defined by the designer, state and suspended state (the last state before
suspension) are annotated as situation elements as they change over time. During
execution at runtime - starting with the root task - the setNewState operation is used
to change the state of the task as well as all related child-tasks (according to their
temporal relations). This allows to explicitly store the execution state of the model as
part of the model. During execution the Enabled Task Set (ETS) is derived and then
each task in this set is set to state “enabled”. Once the task is completed it is set to
“done”. Using this interpretation we distinguish InteractionIn (user input) and
InteractionOut (system output) and application tasks (backend call without user
intervention) to model the workflow of the application.

This example illustrates how the task model and its execution logic can be
embedded into a single executable model while keeping design time and runtime
information separate, but also making the runtime state of the model explicit.

3.4 Summary

The executable models introduced in this section support the creation of models that
define systems and their behavior over time, while also exposing all state information
for manipulation and inspection. The meta-meta-model of executable models
describes the building blocks of such models. We exemplified this principle using
executable task models.

Looking at current model-based approaches [2, 11] there is a clear trend to provide
multiple models for the different aspects (e.g. levels of abstractions) rather than a
single model. We introduce an approach, combining multiple models to create user
interfaces at runtime, in more detail in section 5. Such relations between models are

not reflected by the meta-meta-model, as executable models are first of all self-
contained to ensure executability. The next section thus introduces a mapping meta-
model, that allows to express the relations between multiple models. The model itself
is executable as well, and provides the required event hooks in the execution logic to
interconnect multiple models. The mapping meta-model is positioned on layer M2 of
the MOF architecture [15] (see also Figure 4).

4. Mapping-Meta-Model

The mapping model connects multiple executable models and allows to define
relations between their elements based on the structures given by the meta-meta-
model. The mappings defined in this model are the glue between the models of our
multi-model architecture. The mapping meta-model as well as the other related meta-
models is thereby located at M2 layer of the MOF architecture. Providing an extra
meta-model solely for mappings also enables to benefit from tool support and
removes the problem of mappings hard-coded into the architecture, as has been
already advised by Puerta and Eisenstein [16]. The mapping meta-model allows the
definition of the common nature of the mappings and helps ensuring extensibility and
flexibility. A mapping relates models by relating elements of the models whereas the
models are not aware of their relation. An example of a mapping meta-model,
consisting of a fixed set of predefined mapping types only, can also be found in
UsiXML described by Limbourg [11]. Sottet et al. [18] have defined a mapping meta-
model, which can also be used to describe transformations between model elements at
runtime. However, in contrast to their approach we put a stronger focus on the
specific situation at runtime and the information exchange between dynamic models.
Especially interesting at runtime is the fact, that the relations can be utilized to keep
models synchronized and to transport information between two or more models. The
information provided by the mappings can be used to synchronize elements if the
state of the source elements changes. Mellor et al. [13] also see the main features of
mappings as construction (when the target model is created from the source model)
and synchronization (when data from the source model is propagated into the existing
target model). Our mapping model contains mappings of the latter kind. Focusing on
runtime aspects, we see a mapping as a possibility to alter an existing target model,
based on changes that happen to the related source model. In contrast to the most
common understanding of mappings the mappings we utilize do not transform a
model into another one. Instead, they synchronize runtime data between coexisting
models. Mappings connect definition elements of different models with each other.
They are always triggered by situation elements and activate execution elements.

The conceptual mapping meta-model is provided in Figure 3 and combines
mapping types and mappings. Mapping types are the main elements of the mapping
meta-model, as they provide predefined types of mappings that can be used to define
the actual mappings between elements on M1 layer. A mapping type thereby consists
of two definition elements as well as of well-defined links between the two. The
definition elements are the source and the target of the mapping and the mapping
synchronizes the runtime data between these two elements. The links consist of a

UI Architect Access

UI Designer Access

Mapping
Model

Transformation

targetToSource

Mapping
typeDefinition

Element
Mapping

Type

Execution
Element

trigger targetSituation
Element Link

sourceToTarget

Model
Element

sourceType

targetType

source

target

Figure 3: Mapping Meta-Model

situation element, an execution element and a transformation. The situation element is
the trigger of a link. Whenever a situation element in a model changes, the link is
triggered and the referenced execution logic is executed to synchronize the two
definition elements of the mapping. The execution logic is thus the logical target of
the link. The optional transformation associated with the link describes how the
situation data, which activated the trigger, is transformed into (input) data needed by
the target execution element in the other model. This transformation might be
required, especially when models with distinct data types and structures are linked by
mappings. To simplify the usage of the model, the meta-model supports multiple links
in one mapping type, as multiple situation elements (e.g. related to the same definition
element) might be relevant to trigger the execution. Supporting more than one link
also allows a back linking, as some mapping types might also demand two-way links.

From the designer’s point of view, the initial mapping model now provides a set of
available mapping types with predefined logic, defined on the meta-model level. Thus
to relate two models, the user interface designer extends this initial model by creating
new mappings that reference one of the available mapping types. To create such a
mapping, the designer has to provide the specific source and target model elements to
the mapping and define its type. This leads to a relation between the two elements and
their synchronization according to the given execution logic.

Using our meta-meta-model we were able to define the mapping meta-model
independent from the concrete meta-models that mappings can be created between.
Only the mapping models contain mapping types, which are not of generic nature, but
specifically designed for the given meta-models.

4.1 Modeling Mappings with EMF

The EMF implementation of the mappings basically reflects the meta-model
illustrated in Figure 3 and also conforms to the described meta-meta-model of the
executable models. The main principle behind the realization of the mapping model

with EMF is the ability of EMF to include and reference a model within another
model. This feature allows us to create standard mappings that refer to the meta-
models of the system to design. Once a UI developer creates models according to
these meta-models, the pre-defined mappings can directly be used to relate dedicated
model elements and thus easily provide the necessary information exchange.

Our implementation of the mapping meta-model is derived from the mapping of
our meta-meta-model with the ECore meta-meta-model as introduced in section 3.2.
This way it is possible to define mapping types on top of any executable ECore meta-
model (M2) used within our architecture. The mappings use the mapping types to
connect M1 entities and thus reference EObjects. The mapping type of a mapping
defines what links it contains, whereas each link may be triggered by a different
situation element. In our implementation we made use of the eventing mechanism
provided by EMF in the generated Java code. It enables to register so called adapters
to every EObject. These adapters become notified about any occurrence within the
model element. Every received notification contains the information about the
EStructuralFeature (situation element), which has undergone a change, its new and
previous values. In our prototyping phase we have developed a simple transformation
language which we then used to define the transformation elements. Currently we are
working on the integration of the ATLAS Transformation Language (ATL)1 into the
mapping meta-model. After a link has been triggered and the transformation produced
new data for the target model the Java method denoted by the EOperation of the
execution element is invoked. For this purpose we utilize the reflection mechanisms
of the Java language.

5. The Multi-Access Service Platform (v2)

Based on the concepts of executable models and the mappings, we rebuild our
previously developed Multi-Access Service Platform (MASP). The MASP is a UIMS
that allows the creation of multimodal user interfaces by interpreting models at
runtime. We are currently using the system to build adaptive multimodal interfaces
for smart home environments as part of the Service Centric Home project2. Utilizing
executable models as the underlying concepts for the approach lead to a complete
redesign of the system. Based on the meta-meta-models and the mapping (meta-)
model we selected a set of models to represent the workflow and the interaction with
the application as well as context and backend services (Figure 5). The selection and
design of the models was also influenced by UsiXML models and the Cameleon
reference framework, although we decided to go with a slightly adapted syntax in the
first step. Figure 4 shows the components of the MASP in relation to the MOF Meta
Pyramid. M1 thereby comprises the loosely coupled models while M2 provides the
underlying meta-models. On M2 we also introduced the MASP Core meta-model
which provides the means to initially load applications (sets of models) and trigger the
execution. The Model contains sessions for the user and application management.
Additionally it provides a basic API to access the models, making it easy to build

1 http://www.eclipse.org/m2m/atl/
2 www.sercho.de

Figure 4: The MASP in Relation to the MOF Meta-Pyramid

software and management tools for the platform. Besides the models and their
execution logic, the MASP comprises a channel-based delivery mechanism for the
delivery of the created final user interfaces to the interaction devices [3] and
integrates several sensors (e.g. an Ubisense ultra wide band localization system) for
context recognition.

Figure 5 shows the models we are currently using to develop applications for our
approach. The task model defines the temporal relations between the multiple tasks of
the application and can thus serve as outline for the interaction. A domain model
completes the task model by providing content to the tasks. The model itself on the
one hand defines the data structures we are dealing with, but also holds instances of
these structures, objects, that become accessible at runtime. The life-time of these
objects is determined by the task model again, which also references the objects in the
designated tasks [9]. Altering the content of the domain model happens in two ways.
On the one hand there are backend services that provide information. These services
are on the highest level referenced by the task model in terms of application tasks [9].
A specific description of the service call itself and the referenced objects is provided
by a service model. Thus application tasks are mapped to service calls in the service
model via the appropriate mappings. The other possibility for new or modified
content is the user entering or changing information while interacting with the system.
This is realized by the interaction model, related to interaction tasks. Here we
distinguish input and output tasks which each identify the interaction on the highest
level of abstraction. A reification of the interaction in terms of details is then provided
by the interaction model that comprises an abstract interaction description, which is
modality independent, and a concrete interaction description, which adds the modality
dependent information. Finally, during our work we identified the context model as
an important part as soon as the environment, available devices and thus the context
of the interaction comes into play. We thus also created a context model, allowing to
provide context information. The model is at runtime filled with information
delivered by various sensors and allows the creation of mappings that trigger behavior

Figure 5: Structure of the runtime system (models and mappings)

or UI adaptations dependent on the context. Finally, our mapping model allows the
creation of various mappings between the different parts of the models and thus links
all models together. By linking the task model to service and interaction model, the
execution of the task model and thus changing task states to “enabled” triggers the
activation of service calls and interaction elements. While service calls activate
backend functions, active interaction elements are displayed on the screen and allow
user interaction. They also incorporate domain model elements in their presentation
and allow their manipulation through user input as defined by the mappings. The
context model finally also influences the presentation of the interaction elements that
are related to context information. Thus, the execution of the task model triggers a
chain reaction, leading to the creation of a user interface from the defined user
interface model. The structure underlying this approach also opens the possibility to
add additional models or change existing models in the future. Although our current
approach follows the well accepted Cameleon Reference Framework and thus
provides a similar set of models, it provides a meta-layer, allowing to unite multiple
modeling languages and approaches.

6. Applications

Utilizing executable models as described in this paper offers various opportunities for
future user interface development. We build a couple of prototypes and smaller trials,
which showed great potential for issues like context adaptation at runtime,
personalization, debugging and hot deployment as well as extensibility of running
systems. In the following we report on our results concerning two multimodal
applications (a cooking assistant and an energy manager) we (re-)built based on the
MASP as well as several smaller proof-of-concept prototypes.

Both applications, the cooking assistant (CA) and the energy manager, target smart
home environments and support multimodal interaction. While the CA, we will focus
on in the following, runs in the kitchen and supports the user while preparing a meal,
the energy manager provides an overview of the energy usage of the home devices
and allows to switch devices on and off. The CA is based on three interaction steps.
First the user selects a recipe, from recommendations or the results of a search.
Afterwards the required ingredients are listed and based on the availability in the

home a shopping list is displayed. Finally the cooking process is guided with step by
step instructions. The central model of the CA is the task model, defining the
underlying workflow. Based on the task model, related objects have been modeled as
domain model and service calls to the backend (e.g. to retrieve the list of recipes or to
control kitchen devices) have been defined as service model. Mappings on the one
hand relate application tasks to service calls. Thus as soon as an application task
becomes active the related service call is executed. On the other hand the domain
objects serving as input and output for the service calls are related to these. In a
similar way, interaction tasks are related to interaction objects via mappings.
Interaction objects thus become activated as soon as an interaction task becomes
enabled. This triggers the delivery of the representation of the interaction objects on
the interaction device. The interaction devices are thereby identified as part of the
usage context and thus the mappings between interaction model and context model
provide the foundation for the delivery of the user interface.

In addition to this complete application we also evaluated some additional features
in smaller trials. Based on the developed CA, we explored the runtime inspection of
the state information of the underlying models as well as extension mechanisms and
further capabilities to adapt the UI to the context of use.

 Runtime Development – One feature of the Eclipse Modeling Framework
underlying our implementation is the possibility to directly connect the models to
Java code. We make use of this facility to build an editor that connects to the models
of the running system. Thus any changes we make to the model via the editor are
directly propagated into the runtime system, as they also trigger the related events.
This approach allows to directly inspect and change the running system. As the
situation-elements monitor the state of the execution in various details, there is an
enormous potential to access and manipulate the complete state of the system. All
modeled information is available. This feature simplifies development and debugging
a lot, however, in combination with our strictly model-based approach it also allows
the customization of the application by the end user if appropriate tools are provided
either as additional software or even as part of the application. The loose coupling of
the models and the encapsulation of the execution logic as part of the meta-model also
allow easily extending or changing the application, even at runtime, which is an
important aspect to manage the continuous changes requested from software
developers.

Enhancing a Running System – We evaluated the possibilities to enhance
(running) systems in another case study, where we replaced one model with another
one (conforming to a new meta-model) at runtime. With current task-based
approaches we noted that it is rather difficult to model back and forth navigation e.g.
between different screens of an application, as dialog modeling is not the
responsibility of the task model. Therefore we will transform the task model into a
state machine model and enrich it with additional transitions representing the desired
dialog navigation. This case study showed that it is possible to replace models of the
system without changing the existing models, simply by providing the model and a
set of mappings. In the same way the system can also be extended with additional
models, which emphasizes the language-spanning aspects of the approach.

7. Summary & Outlook

We presented an approach to utilize dynamic executable models to build user
interfaces. Combining definition-, situation- and execution elements provides the
means to make all relevant information explicitly accessible and also helps separating
the parts of the models relevant for the UI designer. In combination with the mapping
model, this approach allows an easy integration of multiple models at runtime to build
complex systems. The loose coupling of models also provides a very flexible structure
that can easily be extended and adapted to different needs. This also addresses the
problem that there are currently no standard or widely accepted UI models. Combined
with development and debugging tools this approach allows to inspect and analyze
the behavior of the interactive system on a very low level of details. To evaluate the
feasibility of the approach to cope with challenges and requirements for the next
generation of user interfaces we developed a model-based runtime system for smart
home user interfaces. We use task, domain, service and interaction models and
mappings between these models at runtime to interpret the modeled information and
derive a user interface. As next steps we want to further evaluate the performance of
our EMF- and Java-based implementation to optimize the implementation. However,
its current implementation shows that the systems perform very well. We also aim at
further refining the models we are using. While the combination of different models
seems suitable, especially our current interaction model gives room for extensions and
enhancements. The possibility to build self-aware systems using executable models is
also a fascinating feature that needs further evaluation. Utilizing the models at
runtime however, does not solve all problems of model-based user interface
development, but it gives possibilities to overcome the technical challenges in
addressing these problems.

8. Acknowledgements

We thank the German Federal Ministry of Economics and Technology for
supporting our work as part of the Service Centric Home project in the "Next
Generation Media" program.

9. References

1. Calvary, G., Coutaz, J., Ganneau, V. Vanderdonckt, J., Demeure, A., Sottet, J.-S. The 4c
reference model for distributed user interfaces. In Proc. of 4th IARIA International
Conference on Autonomic and Autonomous Systems, 2008.

2. Balme, L., Demeure, A., Barralon, N., Coutaz, J., and Calvary, G. Cameleon-rt: A software
architecture reference model for distributed, migratable, and plastic user interfaces. In
EUSAI, 2004.

3. Blumendorf, M., Feuerstack, S., and Albayrak, S. Multimodal user interaction in smart
environments: Delivering distributed user interfaces. In European Conference on Ambient

Intelligence: Workshop on Model Driven Software Engineering for Ambient Intelligence
Applications, 2007.

4. Breton, E. and Bézivin, J.. Towards an understanding of model executability. In FOIS '01:
Proc. of the international conference on Formal Ontology in Information Systems, 2001.

5. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., and Vanderdonckt, J. A
unifying reference framework for multi-target user interfaces. Interacting with Computers,
15(3), 2003.

6. Clerckx, T., Vandervelpen, C., and Coninx, K. Task-based design and runtime support for
multimodal user interface distribution. In Proc. of Engineering Interactive Systems 2007.

7. Coninx, K., Luyten, K., Vandervelpen, C., Van den Bergh, J., and Creemers, B. Dygimes:
Dynamically generating interfaces for mobile computing devices and embedded systems. In
Luca Chittaro, editor, Mobile HCI, volume 2795 of Lecture Notes in Computer Science,
2003.

8. Demeure, A., Calvary, G., Coutaz, J., and Vanderdonckt, J. The comets inspector: Towards
run time plasticity control based on a sematic network. In Proc. of TAMODIA 2006.

9. Feuerstack, S., Blumendorf, B., and Albayrak, S. Prototyping of multimodal interactions for
smart environments based on task models. In European Conference on Ambient
Intelligence: Workshop on Model Driven Software Engineering for Ambient Intelligence
Applications, 2007.

10. Klug, T. and Kangasharju, J. Executable task models. In Proc. of TAMODIA 2005.
11. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., and López-Jaquero, V. Usixml:

A language supporting multi-path development of user interfaces. In EHCI/DS-VIS, volume
3425 of Lecture Notes in Computer Science, 2004.

12. Mellor, S. Agile MDA, 2004.
13. Mellor, S., Scott, K., Uhl, A., and Weise, D. MDA Distilled: Principles of Model-Driven

Architecture. 2004.
14. Mori, G., Paternò, F., and Santoro, C. Design and Development of Multidevice User

Interfaces through Multiple Logical Descriptions. IEEE Trans. Softw. Eng., 30(8), 2004.
15. Object Management Group. Meta Object Facility (MOF) Specification — Version 1.4, April

2002.
16. Puerta, A.R. and Eisenstein, J. Towards a general computational framework for model-based

interface development systems. In Intelligent User Interfaces, 1999.
17. Rohr, M., Boskovic, M., Giesecke, S., and Hasselbring, W. Model-driven development of

self-managing software systems. In “Models@run.time” at the 9th International Conference
on Model Driven Engineering Languages and Systems (MoDELS/UML'06) 2006.

18. Sottet, J.-S., Calvary, G., and Favre, J.-M.. Mapping model: A first step to ensure usability
for sustaining user interface plasticity. In Model Driven Development of Advanced User
Interfaces (MDDAUI 2006), 2006.

19. Sottet, J.-S., Calvary, G., and Favre, J.-M.. Models at runtime for sustaining user interface
plasticity. In “Models@run.time” at the 9th International Conference on Model Driven
Engineering Languages and Systems (MoDELS/UML'06) 2006.

20. Sottet, J.-S., Ganneau, V., Calvary, G., Coutaz, J., Demeure, A., Favre, J.-M., and
Demumieux, R. Model-driven adaptation for plastic user interfaces. In INTERACT (1),
2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

