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ABSTRACT 
Offering user interfaces for interactive applications that are 
flexible enough to be adapted to various context-of-use 
scenarios such as supporting different display sizes or 
addressing various input styles requires an adaptive layout. We 
describe an approach for layout derivation that is embedded in a 
model-based user interface generation process. By an interactive 
and tool-supported process we can efficiently create a layout 
model that is composed of interpretations of the other design 
models and is consistent to the application design. By shifting 
the decision about which interpretations are relevant to support 
a specific context-of-use scenario from design-time to run-time, 
we can flexibly adapt the layout to consider new device 
capabilities, user demands and user interface distributions. We 
present our run-time environment that is able to evaluate the 
relevant model layout information to constraints as they are 
required and to reassemble the user interface parts regarding the 
updated containment, order, orientation and sizes information of 
the layout-model. Finally we present results of an evaluation we 
performed to test the design and run-time efficiency of our 
model-based layouting approach. 

Categories and Subject Descriptors 
H.5 [Information Interfaces and Presentation]: User 
interfaces; D.2.2 [Software Engineering]: Design Tools and 
Techniques- User Interfaces; H.1.2 [Models and Principles]: 
User/Machine Systems-Human factors; H.5.2 [Information 
Interfaces and Presentation]: User Interfaces-graphical user 
interfaces, interaction styles, input devices and strategies, voice 
I/O.

General Terms 
Design, Human Factors 

Keywords 
Layouting, model-based user interfaces, constraint generation, 
context-of-use, human-computer interaction. 

1. INTRODUCTION 
Interactive applications that are deployed to smart environments 
must be able to support different context-of-use scenarios. Such 
scenarios include e.g. adapting the user interface seamlessly to 
various interaction devices or distributing the user interface to a 
set of devices that the user feels comfortable with in a specific 

situation. Such adaptations require flexible and robust (re-) 
layouting mechanisms of the user interface and need to consider 
the underlying tasks and concepts of the application to generate 
a consistent layout presentation for all states and distributions of 
the user interface. The broad range of possible user interface 
distributions and the diversity of available interaction devices 
make a complete specification of each potential context-of-use 
scenario during the application design impossible.  
Specifying the interdependencies between the user interface 
components using constraints is a common approach to address 
these issues and nowadays constraint solvers can calculate 
hundreds of constraints in a reasonable amount of time. To our 
knowledge there is still an approach missing that supports 
designers of a user interface in generating these constraints 
based on the design specifications. A manual constraint setup 
has two disadvantages: first the pure amount of constraints that 
is required even to address small interactive systems is hard to 
handle, and second, the fault tolerance of the constraint setup is 
complex to attain. Even one single constraint that is not 
properly specified can destroy the complete layout in a specific 
situation that has not been considered by the designer during the 
development process. 
This paper introduces an approach for a model-based user 
interface layouting that differs from previous approaches in two 
general aspects: 
1. We interpret the information from already existing user 

interface design models, such as the task tree, the dialog 
model, the abstract user interface model (AUI), the 
concrete user interface model (CUI), the domain model and 
the context model for deriving the user interface layout. 
Therefore we propose an interactive, tool-supported 
process that reduces the amount of information that needs 
to be specified for the layout. The tool enables designers to 
comfortably define design model interpretations by 
specifying statements and subsequently applying them to 
all screens of the user interface. 

2. We shift the decision about which of the statements are 
applied from design-time to run-time to enable flexible 
context-of-use adaptations of the user interface layout. This 
allows us to describe new context-of-use adaptations of the 
layout without the need to change the application itself just 
by describing the layout characteristics of a new platform 
or a new user profile. 

The next section discusses the related work that has been 
considered to support our approach. Section 3 presents the 
layout model and its relation to the other user interface design 
models. Section 4 describes our approach to generate 
constraints based on the interpretation of design models by an 
interactive, tool-supported process. Section 5 presents our 
implementation, integrating a layout model agent into our run-
time-environment (MASP) [2,5]. Section 6 discusses results of 
an evaluation we did to test the efficiency of the model-based 
layout process at design-time by measuring the performance of 
the constraint generation and constraint solving at run-time. 
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Finally Section 7 summarizes the paper and outlines future 
work. 

2. RELATED WORK 
Nichols et al. lists in PUC [10] a set of requirements that need 
to be addressed in order to generate high-quality user interfaces. 
As for layout information they propose to not include specific 
layout information into the models as this first tempts the 
designers to include too many details into the specification for 
each considered platform, second delimits the user interface 
consistency and third might lower the chance of compatibility to 
future platforms.  Different to PUC we are not focusing on 
control user interfaces, but end up in a domain independent 
layout model that specifies the containment, the size, the 
orientation and the order relationships of all individual user 
interface elements. Therefore we do not want to specify the 
layout manually for each targeted platform and do not rely on a 
set of standard elements (like a set of widgets for instance) that 
has been predefined for each platform.  
The SUPPLE system [7] treats interface adaptation as an 
optimization problem. Therefore SUPPLE focuses on 
minimizing the user’s effort when controlling the interface by 
relying on user traces to estimate the effort and to position  
widgets on the interface. Although in SUPPLE an efficient 
algorithm to adapt the user interface is presented, it remains 
questionable if reliable user traces can be generated or 
estimated. While SUPPLE also uses constraints to describe 
device and interactor capabilities they present no details about 
the expressiveness of the constraints and the designers effort in 
specifying these constraints. 
The layout of user interfaces can be described as a linear 
problem, which can be solved using a constraint solver. Recent 
research has been done by Vermeulen [16] implementing the 
Cassowary algorithm [1], a weak constraint satisfaction 
algorithm to support user interface adaptation at run-time to 
different devices. While he demonstrates that constraint 
satisfaction can be done at run-time, to our knowledge he did 
not focus on automatic constraint generation. Other approaches 
describe the user interface layout as a space usage optimization 
problem [8], and use geometric constraint solvers, which try to 
minimize the unused space. Compared to linear constraint 
solving, geometric constraint solvers require plenty of iterations 
to solve such a space optimization problem. Beneath 
performance issues an efficient area usage optimization requires 
a flexible orientation of the user interface elements, which 
critically affects the user interface consistency.  
Richter [13] has proposed several criteria that need to be 
maintained when re-layouting a user interface. Machine 
learning mechanisms can be used to further optimize the layout 
by eliciting the user’s preferences [9]. The Interface Designer 
and Evaluator (AIDE) [14] and Gadget [6] are incorporating 
metrics in the user interface design process to evaluate a user 
interface design.  
Both projects focus on criticizing already existing user interface 
layouts by advising and interactively supporting the designer 
during the layout optimization process. They follow a 
descriptive approach by re-evaluating already existing systems 
with the help of metrics. This is different to our approach that 
can be directly embedded into a model-based design process 
(forward engineering). 
In the next chapter we present our approach for a layout model, 
that is designed to be part of a model-based user interface 
design approach [15] like proposed by the Cameleon Reference 
Framework [3]. Following a model-based user interface 

development involves a developer specifying several models 
using a model editor (such as a task model, a domain model, 
and a dialog model). Each abstract model is reificated to more 
concrete models until the final user interface has been derived. 

3. THE LAYOUTING MODEL 
Like illustrated by figure 1 our layouting model is part of such a 
model-based user interface design process. To derive a layout 
model the designer has to specify interpretations of the design 
models by defining layout statements. In general two different 
statements are possible: First, layout statements that are 
explicitly specified for one user interface and second, layout 
statements that are defined independent of the user interface. 
The latter interprets pre-defined context information to address 
layout adaptations for specific devices and users or specific 
environments. Currently we are focusing on interpreting the 
context, task tree, AUI and dialog models to derive layout 
information.  

Figure 1: The layouting process is embedded into a model-
based user interface design process. 
For each new layout statement that is written into the layout 
model, the designer can initiate a simulation to preview the 
result. The simulation positions the individual user interface 
elements based on the specified layout model statements for all 
screens and context-of-use scenarios that are known at design-
time. 
Our layout model basically consists of a list of ordered 
statements. Like illustrated by figure 2, each statement is 
composed of six properties: the characteristic of the resulting 
layout primary addressed (containment, orientation, and size) 
(3.1), the design models used for the constraint generation (3.2), 
the context-of-use information (3.3), the addressed scope (3.4), 
the type of condition (3.5) and finally the priority value (3.6). In 
the following sections we describe these constituent parts of a 
layout statement in greater detail. 

3.1 Layout Characteristics 
We identified four of these characteristics that can be used to 
specify the layout of a graphical user interface: The 
containment, the order, the orientation and the size of the user 
interface elements.  
Like illustrated by figure 3, the containment describes the 
relation between two basic types of entities: Containers (like c1)
consist of a set of nested containers (c2+c3) and nested elements 
(c2 contains e1 and e2). Elements can present information to the 
user or enable the user to enter data to the application and 
cannot be decomposed any further. Additionally a layout 
describes an order of elements (e.g. from left to right and from 
top to bottom: e1 before e2 and c2 before c3). The orientation 
distinguishes between elements that are oriented horizontally or 
vertically to each other (e.g. e1 vertical to e2). Finally the size 
specifies the width and height of containers and elements (e.g. 
the width of e3 is ½ of the width of e4). 
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3.2 Design Models Interpretation 
Design Models are used to specify the interactive system on 
different levels of abstraction. We interpret the information of 
these models to derive the user interface layout. A task model, a 
domain model, an abstract user interface, and the dialog model 
are typically part of a model-based user interface design. 
Beneath the task model’s hierarchical structure that can be used 
to derive a basic containment structure for the layout [5] other 
information can be derived: For instance, the sum of all atomic 
tasks related to the task tree depth or related to its width can be 
used to balance the presentation size of the tasks. For instance 
the CTT notation [12] categorizes interaction tasks into “edit”, 
“control” and “selection” tasks. This task information can be 
addressed differently related to the context-of-use, for instance 
by prioritizing those tasks that require user input. 
Looking at the abstract user interface model, the interaction 
object type can be used by a layouting statement to derive an 
orientation. E.g. navigational elements can be set vertically or 
horizontally depending on the menu level, whereas selection 
elements can be oriented vertically for a large amount of 
elements and horizontally for small amounts by a layouting 
statement. 

3.3 Condition Type 
Each statement describes either an absolute condition 
(minimum, maximum, or fixed) or a relative condition that 
relates two or more elements. A relative condition targeted to 
the orientation characteristic is for instance: “e1 over e2”, 
regarding the size a relative condition can specify e.g. “e4 
double the width of e3” and finally regarding the containment it 
has the form of “c3 contains e4”. A maximum statement 
containing an absolute condition can be used to specify a 
column layout where elements are wrapped to the next row after 
a specified amount of elements is exceeded. Further on, a 

maximum statement can restrict the size (regarding its height or 
width) or the number of elements in a container. If the size limit 
is exceeded new containers are generated. 

3.4 Application Scope 
Each statement has a fixed scope to address every application 
(application independent statements), the whole application, a 
set of reoccurring elements or a specific screen to handle very 
fine grained design requirements. Application independent 
statements are used to characterize context-of-use adaptations 
that are required to be considered when layouting for a specific 
device (such as specifying the screen size limitation, or the 
minimum size of control buttons for a touch screen). 
Application wide statements help the designer to generalize 
design decisions and maintain consistency as layouting 
decisions can be modeled just once and are automatically 
applied for each reoccurring situation. The more global than 
local statements have been defined the better is the robustness 
for context-of-uses changes and the better layout consistency 
can be expected. Finally a statement can be limited to address a 
single screen to fine tune the layout for aesthetical reasons or to 
refine an application wide layout statement. 

3.5 Context–of-Use Scope 
The context-of-use describes the user, who has preferences and 
demands for the actual situation, a set of devices that she likes 
to use in a certain environment. A layout statement can be 
specified to be relevant for a specific context-of-use situation 
only. For instance in an environment that supports location 
tracking, the distance of the user to a device can be used to scale 
the control elements of the user interface. In the former case the 
control elements are sized small if the user has no way to 
control because of his distance to the display, whereas in the 
latter case the control tasks are sized to meet a pen or a finger 
print respectively. 

3.6 Strict Order by Priority  
Specifying the priority of a statement is required on the one 
hand to support a general-to-specific layouting approach and on 
the other hand to prevent the generation of conflicting layout 
constraints. Thus, general layouting principles, as described in 
style-guidelines or given by a corporate design can be generally 
defined and overwritten to address more specific situations later 
on. We address these aspects by specifying a strict order in that 
the layout statements are evaluated to generate the constraints 
that we indicate by the priority property. 

3.7 Conclusions  
Deriving an interface layout based on the design models of a 
model-based interface development approach results in a 
consistent layout. Further on, such a layout model derivation 
reduces the information that has to be specified for the interface 
layout as a lot of information is already available in the design 
models. The more global application layout statements can be 
derived from the design models the better robustness of the 
interface to unknown context-of-use changes can be expected.  
To realize such a model-based layout generation that is based on 
model interpretation we require (1) an efficient way for the 
designer to select suitable model interpretations for generating a 
layout (2) a process that eases the identification of global 
interpretations to enforce the layout’s consistency and 
robustness against context-of-use changes and finally (3) a 
model-based run-time system that can evaluate these 
interpretations in an efficient manner so that layouting 
adaptation of a user interface is possible at run-time.  

Figure 2: The six axes of the space of properties of the 
layout statements. 

Figure 3: Exemplary sketch of a user interface layout. 
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We introduce our model-based layout editor in the next section 
that we implemented to address requirements (1) and (2), and 
describe how we realized the layouting in our run-time 
environment, the Multi-Access Service Platform (MASP), to 
adapt to context changes (3). 

4. LAYOUT MODEL GENERATOR 
Using the layout model generator the designer has to initially 
load all design models of an interactive application as well as 
already known contexts-of-use scenarios that contain device 
capability descriptions and the preferences of the user.  

Figure 4: The MASP Layout Model Generator 

Figure 4 shows a screenshot of the editor: Using the pull down 
menu in the upper left corner (“PTS”), the designer can browse 
through all screens of the application. Each screen consists of a 
set of elements that should be presented simultaneously to the 
user on a single device. Predefined interface distributions that 
allow to one screen to several devices, each containing 
complementary parts of the interface can be defined as a set of 
separate screens with the same context-of-use 
The result of the layouting process, the layout model is 
visualized by a box-based layout that represents each individual 
user interface element that is part of a screen as a box. By the 
box-based layout the designer gets an impression of the 
layouting results concerning the individual elements size, 
containment, order and orientation relationships. Different to 
the layout result that is calculated during run-time and ends up 
with absolute coordinates for each box, the simulator linearly 
scales the preview s but considers the aspect ratio of the 
targeted device in order to comfortably support layout modeling 
for large display. 
Using the layout editor, the designer specifies all layout 
statements by using a context menu that is related to the box-
based simulation area. The application scope (global, 
application or screen specific), and the context-of-use of a 
statement can be set by two separate pull down menus above the 
simulation area. 
The process of deriving layout statement is supported by the 
tool following several subsequent steps: 
1. The designer decides about the layout characterization that 

the statement should address: the containment structure, 
the element order, the orientation or the size. 

2. The designer defined a new layout statement that interprets 
one or more 

a. design model information (such as the AUI type: 

input, output, control, or selection task or the 
CUI type) 

b. context model information that require a layout 
adaptation. 

3. The designer can visually weight a relational statement. 
E.g. relate the size-ratio between input and output elements 
in general or specify size relations between two specific 
boxes.  

4. The Model Generator automatically applies the new 
statement consistent to the design models to all screens of 
the applications (limited by the scope of the statement). 

5. The Model Generator updates the boxed simulation area to 
reflect the new layout for all screens and all actually 
supported context-of-use scenarios of the user interface 
layout. 

6. The designer checks the result and manipulates the order of 
the statements. 

In order to ease the identification of global layout statements to 
force the layout consistency and robustness against context-of-
use changes (requirement 2), we implemented an abstract-to-
detail slider, which is depicted to the right in figure 4. The slider 
allows the designer to browse through the nested boxes by 
moving the slider up and down starting from the box that 
contains the whole application, to the atomic elements that 
describe individual user interface widgets. Following such an 
abstract-to-detail layout modeling, the designer is supported to 
start specifying statements on the highest abstraction level 
possible. The editor visualizes atomic elements in blue and 
boxes that contain nested elements through a yellow overlay 
like depicted in figure 4. 
To prevent specifying conflicting statements the designer is 
allowed only to define relational statements between elements 
that have been specified on the same nesting level (which 
corresponds to the abstraction level of the task tree if the task 
model has been used to derive the containment). In the editor, 
we use the red corners to indicate elements that are located on 
the same nesting level and thus can be target of a relational 
statement. For instance in figure 4 the red corners indicate two 
separate boxes of an exemplary  application that are not directly 
related: The upper one highlights the two boxes 
“showCurrentStepDetails” and “Help” whereas the lower one 
consists of one box “stepNavigation” and one individual 
element “stepSelection”. In this case the designer has the option 
to define an interpretation for the relation between 
“showCurrentStepDetails” and “Help” but not the option to 
specify a direct relation containing elements of the upper and 
the lower box (since such a relation has to be set on a higher 
level of abstraction which contains both boxes). 
Each statement that has been defined is written into the layout 
model and gets instantly evaluated to a set of constraints that is 
solved to update the box-based preview. This process happens 
without any remarkable delay so that we can recalculate the 
constraints on the fly to give an instant visual feedback.  
Figure 5 presents a screenshot of the editor’s view of the layout 
model. The layout statements are grouped by the layout 
characteristic they are primarily addressing. In case conflicting 
constraint sets have been generated the last statement that the 
designer has entered and the one that caused the conflict is 
highlighted red. 
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Not all of the four layout characteristics can be handled 
independently from each other. First, the containment 
constraints the order, orientation and size characteristics and 
second, the element order constraints the orientation and the 
element size. To manage these interdependencies we define a 
general order in which the statements are processed based on 
the layout characteristic they are mainly addressing: Like 
depicted by the screenshot in figure 5 we process the 
containment-related statements before the order-related ones 
Thereafter the orientation-related statements and finally the size 
-related statements are processed. 
After a suitable set of constraint generating functions has been 
identified, the designer can check the resulting layout for its 
adaptivity to manage certain context-of-use scenarios by 
browsing through a set of predefined contexts-of-use. 
Predefined contexts-of-use contain further context-specific 
layout statements that have been specified independent from a 
certain application and are reflecting the capabilities of a device 
or the preferences of a user that are already known at design-
time. Like illustrated in figure 1 the layout statements of 
predefined contexts-of-use are merged to the layout statements 
of the application to simulate the user interface layout. In the 
following section we describe how the layout statements are 
evaluated to constraints in our run-time environment. 

5. CONSTRAINT GENERATION AT 
RUN-TIME  
Following the idea of using software agents to coordinate the 
user interface management system [3] we are using an agent-
based run-time environment, the Multi-Access Service Platform 

(MASP) to generate and adapt user interfaces. But instead of 
requiring a hierarchical organization to several agents like 
proposed by PAC-Amodeus [11], the communication flow 
between the agents in our environment can be flexibly 
configured based on the requirements of the interactive 
application. As illustrated by figure 6 the environment is driven 
by several agents where each interprets one user interface 
model. In contrast to other approaches [3,15] that refine a user 
interface model at design-time to end up with a compiled 
version of the user interface, we keep all of the models alive at 
run-time. This allows us to more flexibly react to context-of-use 
changes that have not been desired at design-time by specifying 
the required adaptation on an abstract model-level. 
Each agent is comprised of two parts: a tuple space to store the 
instantiated model information and a manager containing the 
semantics and functionality to manipulate the model 
information. Whereas the manager has complete access to its 
own tuple space it is not aware of the other agents connected to 
the system. We connect the agents by using tuple space 
operations (atomic read/manipulate/write) and the eventing 
system of a tuple space. The eventing system allows a manager 
to register for changes of another tuple space. Each agent, 
handling one user interface model is instantiated once to run a 
single application, but is able to handle several sessions for 
different users that are accessing the same application. 
The communication processes between all agents are not hard 
wired but instead configured for each application based on the 
user interface models that are relevant for the applications 
domain. Therefore we can easily add the layouting model agent 
as an additional component to the MASP..  

Service Service 
Model Agent

Task Model 
Agent

Domain 
Model Agent

Service

Context 
Model Agent

Channel

Channel

AUI Model 
Agent

CUI Model 
Agent

Distribution 
Model Agent

FUI Model 
Agent

Layouting
Model Agent

Figure 6: The layouting model is embedded as an agent into 
our run-time environment. 

As illustrated by figure 6, the layouting agent registers itself for 
events from the distribution agent, which calculates the 
distribution of a presentation task set to all platforms that are 
connected to the MASP. For each new or updated user interface 
distribution the layouting agent receives an event containing all 
the elements of the user interface that should be simultaneously 
presented on a specific platform. While the distribution agent is 
required to calculate a reasonable user interface distribution 
based on the actual context of use, the layout agent has to layout 
a presentation for all the individual elements it receives from the 
distribution agent for a single device. 

Figure 5: The actual layout model consisting of a set of 
statements that are grouped by the layout characteristic they 

are targeting to.
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As soon as such an event from the Distribution Model Agent 
has been received the Layout Model Agent reads the actual 
context-of-use and evaluates all of the layouting statements that 
are relevant for the actual user interface screen.  
 

Figure 7 depicts the internal setup of a Layout Model Agent and 
its internal as well as its external communication. The agent 
senses for two external events to happen: First, for a new 
distribution of the user interface and second, for a change of the 
context-of-use. Both stimulate the agent to select and assemble 
the layouting statements. The selection of suitable statements is 
done by the following way: 
1. Retrieve layouting statements for the actual context of use 

that have been specified independently from the 
application and that specify layout requirements to address 
a certain user or a specific device. 

2. From the ordered statement list select the statements for a 
screen s that: 

a. address application wide layout interpretation 
b. address reoccurring elements that are used by s
c. directly address the screen s
d. are defined for this application and the relevant 

context-of-use scenario. 
The statements that have been selected and ordered by priority 
are then evaluated to a set of constraints by the statement 

evaluator. Thereafter the layout agent finally solves the new 
constraint setup using the cassowary constraint solver [1]. 
Solving the constraints results in absolute positions for each 
element of the user interface that are stored within the layouting 
agent’s own tuple space. The CUI Model Agent is registered for 
updates to the absolute positions and therefore receives updates 
for each change of these coordinates that the CUI Model Agent 
will use to re-position the user interface elements. 
Different to other approaches that use a constraint solver to 
calculate the user interface layout, we introduced an additional 
level of abstraction for defining the user interface layout by a 
separate layout model that includes statements that are derived 
using an interactive and tool-supported process and are 
consistent to the other user-interface models. Since we decide at 
run-time which statements to evaluate to generate constraints, 
we can flexibly address layout adaptations to new contexts-of-
use scenarios that can even be independently specified from an 
application but have been introduced together with a new device 
or a new kind of user type. 
In the next chapter we present first results of an evaluation we 
did to test the efficiency of our approach. The evaluation has 
been done as part of a research project where we realized a 
multi-modal cooking assistant that supports the user in finding 
recipes, creating a shopping list and guides the user step by step 
through the cooking process. 
 

6. EVALUATION 
We tested our approach regarding two aspects: first, the 
efficiency at design-time for the designer to generate the layout 
model by using the layout model generator. Second we tested 
the efficiency of the implementation to generate and solve the 
constraints in our run-time system. 

6.1 Design Efficiency 
To test the design efficiency of the approach, we asked a 
designer to realize a layout for an interactive cooking assistant 
application based on a textual description of a scenario of how 
the cooking assistant should support the user. The designer 
created three screens and one user interface distribution 
scenario where one screen is split to two different devices: The 
initial screen asks the user to search for a recipe based on 
several search options. The second screen is about assisting the 
user to generate a shopping list by asking the user which of the 

Figure 7: Each Model Agent is comprised of a manager 
that encapsulates the agent’s functionality and a tuple 

space to store its data. 

Figure 8: The screen for the recipe search and the final box-based layout result of the layout-model 
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required ingredients are available and which are not available. 
This screen could be split into two parts where one part gets 
distributed onto a PDA that could be taken along during 
shopping and the other part remains on a touch screen in the 
kitchen. The last screen assists the user during cooking by 
offering multi-medial help, controlling the kitchen appliances 
and by splitting each recipe into a list of steps containing the 
required ingredients as well as a detailed description about what 
to do in each step. Figure 8 presents the initial screen for the 
recipe search as it has been realized by the designer and the 
result of the model-based layouting using the box-based layout 
of the editor. 
Independently from the designer we asked a developer to follow 
a model-based development approach. Initially both, the 
designer and the developer shared the same textual description 
of a scenario for the cooking assistant. Based on the results of 
the model-based development approach including a fine grained 
task model, a domain model and an AUI model, we then derived 
a model-based layout that should correspond to the screens of 
the designer as close as possible. Finally we measured the 
amount of statements that have been required to end up with the 
same layout as the designer has realized.  
Each screen has a different layout complexity consisting of a 
number of elements that are nested based on the abstraction 
level of the task model. 

Table 1: Complexity of the screens that need to be layouted 
and the amount of statements required. 1) Elements to 

layout, 2) Abstraction levels 3) Number of containment-, 4) 
orientation-, 5) order- 6) site-related statements 7) total 

amount of statements 

Table 1 lists the level of complexity (number of elements, and 
the maximum nesting level utilized) for the three screens that 
have been sequentially layouted and the amount of statements 
that were required to realize the layout of the designer. After the 
first screen has been layouted the derived statements have been 
reapplied to the second screen and finally to the third screen. 
The second column of table 1 lists the different levels of UI-
complexities that we have considered by the three screens: 
Whereas the RecipeFinder screen has a lot of elements (19) and 
a less nested structure of 7 levels, the Cooking Aid screen has 
15 elements on 10 nesting levels as it is composed of various 
parts that are not directly related (e.g. the multi-medial help and 
the appliance control). For the ShoppingList screen two further 
layouts have been designed that are reflecting a distribution 
scenario where parts of the screen get distributed to a PDA (4 
elements) and some parts (9 elements) remain on the screen. By 
analyzing the amount and type of statements that were required 
to layout the screens in the same way like the designer did, 
several observations have been made and are listed in the 
following paragraphs: 

• Containment and order related statements can be derived 
from a task tree efficiently. 

• If the task model is used to derive the containment and 
atomic tasks are identical to individual widgets, the 
introduction of further containment-related statements is 
required (for our application we required 8 containment 
statements for grouping checkboxes for the recipe search 
screen). 

• Size related statements can be defined very efficiently on 
an application wide, global level based on the information 
of the design models (such as weighting input to output 
tasks, or by giving control tasks that usually end up 
presented as buttons a global minimum /maximum size 
restriction).  

• The aspect ratio has to be defined pictures that should be 
presented within a task (using a size relational statement) 
which can be automatically derived at run-time when 
loading the picture. 

• The orientation related statements can only be very limited 
specified on a global level but have to be reapplied for 
most of the individual screens. This is because our design 
models have no information that can be used to derive an 
initial orientation. So we applied a heuristic approach that 
produces elements with a balanced width to height relation 
by switching the orientation of the elements. Therefore we 
toggle the orientation horizontal to vertical and vice-versa, 
for each nesting level that has been derived from the task 
model. 

• The container, order and size related statements of the 
layout model helped to assemble layouts for user interface 
distributions that have not been explicitly addressed at 
design-time. Orientation related statements caused 
problems as after a distribution has been initiated the re-
orientation of the remaining user interface parts were not 
expected by the users. 

6.2 Efficiency at Run-time 
In order to check the run-time performance of generating and 
solving the constraints, we measured the performance of both 
the statement evaluation and the constraint solving separately. 

Screen 1) 2) 3) 4) 
1.Recipe 
Search 

25 142 <1ms 14 ms 

2.Shopping 
List 

20 107 <1ms 8 ms 

3. Distribution 
PDA,Touch 

8,10 56,81 <1ms 8,10ms 

4. Cooking Aid 23 130 <1ms 13 ms 

Table 2: Complexity of the screens the need to be layouted 
and the amount of statements required. 1) Number of 

statements to evaluate, 2) Number of evaluated constraints 3) 
Measurement for statement evaluation (ms) 4) Duration for 

constraint solving (ms) 

Table 2 shows the results of the performance evaluation for our 
cooking assistant application. For each screen we have 
measured the amount of statements that have been selected as 
relevant for layouting each screen (second column) and the 
amount of constraints that have been generated by evaluating 
the selected statements. It could be observed that currently an 
average of 5 to 7 constraints is generated by one statement. In 
the last two columns the measured average calculation time (of 
three runs) for selecting the required statements and the duration 

Screen 1) 2) 3) 4) 5) 6) 7) 

1.Recipe 
Search 19 7 9 3 3 4 19 

2.Shopping 
List 13 8 0 6 1 2 12 

3. Distribution: 
PDA,Touch 4,9 8 0 1,2 0 0 0 

3.Cooking Aid 15 10 0 2 2 4 8 
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for solving the generated constraints are listed: We could 
observe that the time to choose between the statements that are 
relevant for a specific situation was always under 1ms and the 
amount of constraints (and the amount of selected relevant 
statements) is related to the solving time. Thus, the bigger the 
difference between the overall number of layouting statements 
and the number of selected statements the shorter constraint 
solving times can be expected. 

7. CONCLUSION 
The information of the design models of a a model-based 
interface design approach can be interpreted to derive a layout 
model. We describe these interpretations by statements that 
create a layout model that we evaluate at run-time. This 
approach offers two advantages: First, since the statements are 
interpreting the design models, they ensure a consistent user 
interface layout and second, as the statements are evaluated at 
run-time, they enable flexible context-of-use adaptations even to 
situations that have not been directly considered during 
application design. 
We are currently investigating  further evaluations as the 
initially evaluation data is based on a relatively small 
application. Although we initially hoped to identify a set of 
predefined layout derivations based on preexisting design 
models that can be generally applied for all applications, we are 
now trying to classify application types and try to figure out if 
we can support the layout designer by proposing different 
statement sets based on the application type.  
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