
Model-based Layout Generation
Sebastian Feuerstack, Marco Blumendorf, Veit Schwartze, Sahin Albayrak

DAI-Labor, TU-Berlin
Ernst-Reuter-Platz 7, D-10587 Berlin

{Sebastian.Feuerstack, Marco.Blumendorf, Veit.Schwartze, Sahin.Albayrak}@DAI-Labor.de

ABSTRACT
Offering user interfaces for interactive applications that are
flexible enough to be adapted to various context-of-use
scenarios such as supporting different display sizes or
addressing various input styles requires an adaptive layout. We
describe an approach for layout derivation that is embedded in a
model-based user interface generation process. By an interactive
and tool-supported process we can efficiently create a layout
model that is composed of interpretations of the other design
models and is consistent to the application design. By shifting
the decision about which interpretations are relevant to support
a specific context-of-use scenario from design-time to run-time,
we can flexibly adapt the layout to consider new device
capabilities, user demands and user interface distributions. We
present our run-time environment that is able to evaluate the
relevant model layout information to constraints as they are
required and to reassemble the user interface parts regarding the
updated containment, order, orientation and sizes information of
the layout-model. Finally we present results of an evaluation we
performed to test the design and run-time efficiency of our
model-based layouting approach.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation]: User
interfaces; D.2.2 [Software Engineering]: Design Tools and
Techniques- User Interfaces; H.1.2 [Models and Principles]:
User/Machine Systems-Human factors; H.5.2 [Information
Interfaces and Presentation]: User Interfaces-graphical user
interfaces, interaction styles, input devices and strategies, voice
I/O.

General Terms
Design, Human Factors

Keywords
Layouting, model-based user interfaces, constraint generation,
context-of-use, human-computer interaction.

1. INTRODUCTION
Interactive applications that are deployed to smart environments
must be able to support different context-of-use scenarios. Such
scenarios include e.g. adapting the user interface seamlessly to
various interaction devices or distributing the user interface to a
set of devices that the user feels comfortable with in a specific

situation. Such adaptations require flexible and robust (re-)
layouting mechanisms of the user interface and need to consider
the underlying tasks and concepts of the application to generate
a consistent layout presentation for all states and distributions of
the user interface. The broad range of possible user interface
distributions and the diversity of available interaction devices
make a complete specification of each potential context-of-use
scenario during the application design impossible.
Specifying the interdependencies between the user interface
components using constraints is a common approach to address
these issues and nowadays constraint solvers can calculate
hundreds of constraints in a reasonable amount of time. To our
knowledge there is still an approach missing that supports
designers of a user interface in generating these constraints
based on the design specifications. A manual constraint setup
has two disadvantages: first the pure amount of constraints that
is required even to address small interactive systems is hard to
handle, and second, the fault tolerance of the constraint setup is
complex to attain. Even one single constraint that is not
properly specified can destroy the complete layout in a specific
situation that has not been considered by the designer during the
development process.
This paper introduces an approach for a model-based user
interface layouting that differs from previous approaches in two
general aspects:
1. We interpret the information from already existing user

interface design models, such as the task tree, the dialog
model, the abstract user interface model (AUI), the
concrete user interface model (CUI), the domain model and
the context model for deriving the user interface layout.
Therefore we propose an interactive, tool-supported
process that reduces the amount of information that needs
to be specified for the layout. The tool enables designers to
comfortably define design model interpretations by
specifying statements and subsequently applying them to
all screens of the user interface.

2. We shift the decision about which of the statements are
applied from design-time to run-time to enable flexible
context-of-use adaptations of the user interface layout. This
allows us to describe new context-of-use adaptations of the
layout without the need to change the application itself just
by describing the layout characteristics of a new platform
or a new user profile.

The next section discusses the related work that has been
considered to support our approach. Section 3 presents the
layout model and its relation to the other user interface design
models. Section 4 describes our approach to generate
constraints based on the interpretation of design models by an
interactive, tool-supported process. Section 5 presents our
implementation, integrating a layout model agent into our run-
time-environment (MASP) [2,5]. Section 6 discusses results of
an evaluation we did to test the efficiency of the model-based
layout process at design-time by measuring the performance of
the constraint generation and constraint solving at run-time.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AVI'08, 28-30 May , 2008, Napoli, Italy
Copyright 2008 ACM 1-978-60558-141-5...$5.00

217

Finally Section 7 summarizes the paper and outlines future
work.

2. RELATED WORK
Nichols et al. lists in PUC [10] a set of requirements that need
to be addressed in order to generate high-quality user interfaces.
As for layout information they propose to not include specific
layout information into the models as this first tempts the
designers to include too many details into the specification for
each considered platform, second delimits the user interface
consistency and third might lower the chance of compatibility to
future platforms. Different to PUC we are not focusing on
control user interfaces, but end up in a domain independent
layout model that specifies the containment, the size, the
orientation and the order relationships of all individual user
interface elements. Therefore we do not want to specify the
layout manually for each targeted platform and do not rely on a
set of standard elements (like a set of widgets for instance) that
has been predefined for each platform.
The SUPPLE system [7] treats interface adaptation as an
optimization problem. Therefore SUPPLE focuses on
minimizing the user’s effort when controlling the interface by
relying on user traces to estimate the effort and to position
widgets on the interface. Although in SUPPLE an efficient
algorithm to adapt the user interface is presented, it remains
questionable if reliable user traces can be generated or
estimated. While SUPPLE also uses constraints to describe
device and interactor capabilities they present no details about
the expressiveness of the constraints and the designers effort in
specifying these constraints.
The layout of user interfaces can be described as a linear
problem, which can be solved using a constraint solver. Recent
research has been done by Vermeulen [16] implementing the
Cassowary algorithm [1], a weak constraint satisfaction
algorithm to support user interface adaptation at run-time to
different devices. While he demonstrates that constraint
satisfaction can be done at run-time, to our knowledge he did
not focus on automatic constraint generation. Other approaches
describe the user interface layout as a space usage optimization
problem [8], and use geometric constraint solvers, which try to
minimize the unused space. Compared to linear constraint
solving, geometric constraint solvers require plenty of iterations
to solve such a space optimization problem. Beneath
performance issues an efficient area usage optimization requires
a flexible orientation of the user interface elements, which
critically affects the user interface consistency.
Richter [13] has proposed several criteria that need to be
maintained when re-layouting a user interface. Machine
learning mechanisms can be used to further optimize the layout
by eliciting the user’s preferences [9]. The Interface Designer
and Evaluator (AIDE) [14] and Gadget [6] are incorporating
metrics in the user interface design process to evaluate a user
interface design.
Both projects focus on criticizing already existing user interface
layouts by advising and interactively supporting the designer
during the layout optimization process. They follow a
descriptive approach by re-evaluating already existing systems
with the help of metrics. This is different to our approach that
can be directly embedded into a model-based design process
(forward engineering).
In the next chapter we present our approach for a layout model,
that is designed to be part of a model-based user interface
design approach [15] like proposed by the Cameleon Reference
Framework [3]. Following a model-based user interface

development involves a developer specifying several models
using a model editor (such as a task model, a domain model,
and a dialog model). Each abstract model is reificated to more
concrete models until the final user interface has been derived.

3. THE LAYOUTING MODEL
Like illustrated by figure 1 our layouting model is part of such a
model-based user interface design process. To derive a layout
model the designer has to specify interpretations of the design
models by defining layout statements. In general two different
statements are possible: First, layout statements that are
explicitly specified for one user interface and second, layout
statements that are defined independent of the user interface.
The latter interprets pre-defined context information to address
layout adaptations for specific devices and users or specific
environments. Currently we are focusing on interpreting the
context, task tree, AUI and dialog models to derive layout
information.

Figure 1: The layouting process is embedded into a model-
based user interface design process.
For each new layout statement that is written into the layout
model, the designer can initiate a simulation to preview the
result. The simulation positions the individual user interface
elements based on the specified layout model statements for all
screens and context-of-use scenarios that are known at design-
time.
Our layout model basically consists of a list of ordered
statements. Like illustrated by figure 2, each statement is
composed of six properties: the characteristic of the resulting
layout primary addressed (containment, orientation, and size)
(3.1), the design models used for the constraint generation (3.2),
the context-of-use information (3.3), the addressed scope (3.4),
the type of condition (3.5) and finally the priority value (3.6). In
the following sections we describe these constituent parts of a
layout statement in greater detail.

3.1 Layout Characteristics
We identified four of these characteristics that can be used to
specify the layout of a graphical user interface: The
containment, the order, the orientation and the size of the user
interface elements.
Like illustrated by figure 3, the containment describes the
relation between two basic types of entities: Containers (like c1)
consist of a set of nested containers (c2+c3) and nested elements
(c2 contains e1 and e2). Elements can present information to the
user or enable the user to enter data to the application and
cannot be decomposed any further. Additionally a layout
describes an order of elements (e.g. from left to right and from
top to bottom: e1 before e2 and c2 before c3). The orientation
distinguishes between elements that are oriented horizontally or
vertically to each other (e.g. e1 vertical to e2). Finally the size
specifies the width and height of containers and elements (e.g.
the width of e3 is ½ of the width of e4).

218

3.2 Design Models Interpretation
Design Models are used to specify the interactive system on
different levels of abstraction. We interpret the information of
these models to derive the user interface layout. A task model, a
domain model, an abstract user interface, and the dialog model
are typically part of a model-based user interface design.
Beneath the task model’s hierarchical structure that can be used
to derive a basic containment structure for the layout [5] other
information can be derived: For instance, the sum of all atomic
tasks related to the task tree depth or related to its width can be
used to balance the presentation size of the tasks. For instance
the CTT notation [12] categorizes interaction tasks into “edit”,
“control” and “selection” tasks. This task information can be
addressed differently related to the context-of-use, for instance
by prioritizing those tasks that require user input.
Looking at the abstract user interface model, the interaction
object type can be used by a layouting statement to derive an
orientation. E.g. navigational elements can be set vertically or
horizontally depending on the menu level, whereas selection
elements can be oriented vertically for a large amount of
elements and horizontally for small amounts by a layouting
statement.

3.3 Condition Type
Each statement describes either an absolute condition
(minimum, maximum, or fixed) or a relative condition that
relates two or more elements. A relative condition targeted to
the orientation characteristic is for instance: “e1 over e2”,
regarding the size a relative condition can specify e.g. “e4
double the width of e3” and finally regarding the containment it
has the form of “c3 contains e4”. A maximum statement
containing an absolute condition can be used to specify a
column layout where elements are wrapped to the next row after
a specified amount of elements is exceeded. Further on, a

maximum statement can restrict the size (regarding its height or
width) or the number of elements in a container. If the size limit
is exceeded new containers are generated.

3.4 Application Scope
Each statement has a fixed scope to address every application
(application independent statements), the whole application, a
set of reoccurring elements or a specific screen to handle very
fine grained design requirements. Application independent
statements are used to characterize context-of-use adaptations
that are required to be considered when layouting for a specific
device (such as specifying the screen size limitation, or the
minimum size of control buttons for a touch screen).
Application wide statements help the designer to generalize
design decisions and maintain consistency as layouting
decisions can be modeled just once and are automatically
applied for each reoccurring situation. The more global than
local statements have been defined the better is the robustness
for context-of-uses changes and the better layout consistency
can be expected. Finally a statement can be limited to address a
single screen to fine tune the layout for aesthetical reasons or to
refine an application wide layout statement.

3.5 Context–of-Use Scope
The context-of-use describes the user, who has preferences and
demands for the actual situation, a set of devices that she likes
to use in a certain environment. A layout statement can be
specified to be relevant for a specific context-of-use situation
only. For instance in an environment that supports location
tracking, the distance of the user to a device can be used to scale
the control elements of the user interface. In the former case the
control elements are sized small if the user has no way to
control because of his distance to the display, whereas in the
latter case the control tasks are sized to meet a pen or a finger
print respectively.

3.6 Strict Order by Priority
Specifying the priority of a statement is required on the one
hand to support a general-to-specific layouting approach and on
the other hand to prevent the generation of conflicting layout
constraints. Thus, general layouting principles, as described in
style-guidelines or given by a corporate design can be generally
defined and overwritten to address more specific situations later
on. We address these aspects by specifying a strict order in that
the layout statements are evaluated to generate the constraints
that we indicate by the priority property.

3.7 Conclusions
Deriving an interface layout based on the design models of a
model-based interface development approach results in a
consistent layout. Further on, such a layout model derivation
reduces the information that has to be specified for the interface
layout as a lot of information is already available in the design
models. The more global application layout statements can be
derived from the design models the better robustness of the
interface to unknown context-of-use changes can be expected.
To realize such a model-based layout generation that is based on
model interpretation we require (1) an efficient way for the
designer to select suitable model interpretations for generating a
layout (2) a process that eases the identification of global
interpretations to enforce the layout’s consistency and
robustness against context-of-use changes and finally (3) a
model-based run-time system that can evaluate these
interpretations in an efficient manner so that layouting
adaptation of a user interface is possible at run-time.

Figure 2: The six axes of the space of properties of the
layout statements.

Figure 3: Exemplary sketch of a user interface layout.

219

We introduce our model-based layout editor in the next section
that we implemented to address requirements (1) and (2), and
describe how we realized the layouting in our run-time
environment, the Multi-Access Service Platform (MASP), to
adapt to context changes (3).

4. LAYOUT MODEL GENERATOR
Using the layout model generator the designer has to initially
load all design models of an interactive application as well as
already known contexts-of-use scenarios that contain device
capability descriptions and the preferences of the user.

Figure 4: The MASP Layout Model Generator

Figure 4 shows a screenshot of the editor: Using the pull down
menu in the upper left corner (“PTS”), the designer can browse
through all screens of the application. Each screen consists of a
set of elements that should be presented simultaneously to the
user on a single device. Predefined interface distributions that
allow to one screen to several devices, each containing
complementary parts of the interface can be defined as a set of
separate screens with the same context-of-use
The result of the layouting process, the layout model is
visualized by a box-based layout that represents each individual
user interface element that is part of a screen as a box. By the
box-based layout the designer gets an impression of the
layouting results concerning the individual elements size,
containment, order and orientation relationships. Different to
the layout result that is calculated during run-time and ends up
with absolute coordinates for each box, the simulator linearly
scales the preview s but considers the aspect ratio of the
targeted device in order to comfortably support layout modeling
for large display.
Using the layout editor, the designer specifies all layout
statements by using a context menu that is related to the box-
based simulation area. The application scope (global,
application or screen specific), and the context-of-use of a
statement can be set by two separate pull down menus above the
simulation area.
The process of deriving layout statement is supported by the
tool following several subsequent steps:
1. The designer decides about the layout characterization that

the statement should address: the containment structure,
the element order, the orientation or the size.

2. The designer defined a new layout statement that interprets
one or more

a. design model information (such as the AUI type:

input, output, control, or selection task or the
CUI type)

b. context model information that require a layout
adaptation.

3. The designer can visually weight a relational statement.
E.g. relate the size-ratio between input and output elements
in general or specify size relations between two specific
boxes.

4. The Model Generator automatically applies the new
statement consistent to the design models to all screens of
the applications (limited by the scope of the statement).

5. The Model Generator updates the boxed simulation area to
reflect the new layout for all screens and all actually
supported context-of-use scenarios of the user interface
layout.

6. The designer checks the result and manipulates the order of
the statements.

In order to ease the identification of global layout statements to
force the layout consistency and robustness against context-of-
use changes (requirement 2), we implemented an abstract-to-
detail slider, which is depicted to the right in figure 4. The slider
allows the designer to browse through the nested boxes by
moving the slider up and down starting from the box that
contains the whole application, to the atomic elements that
describe individual user interface widgets. Following such an
abstract-to-detail layout modeling, the designer is supported to
start specifying statements on the highest abstraction level
possible. The editor visualizes atomic elements in blue and
boxes that contain nested elements through a yellow overlay
like depicted in figure 4.
To prevent specifying conflicting statements the designer is
allowed only to define relational statements between elements
that have been specified on the same nesting level (which
corresponds to the abstraction level of the task tree if the task
model has been used to derive the containment). In the editor,
we use the red corners to indicate elements that are located on
the same nesting level and thus can be target of a relational
statement. For instance in figure 4 the red corners indicate two
separate boxes of an exemplary application that are not directly
related: The upper one highlights the two boxes
“showCurrentStepDetails” and “Help” whereas the lower one
consists of one box “stepNavigation” and one individual
element “stepSelection”. In this case the designer has the option
to define an interpretation for the relation between
“showCurrentStepDetails” and “Help” but not the option to
specify a direct relation containing elements of the upper and
the lower box (since such a relation has to be set on a higher
level of abstraction which contains both boxes).
Each statement that has been defined is written into the layout
model and gets instantly evaluated to a set of constraints that is
solved to update the box-based preview. This process happens
without any remarkable delay so that we can recalculate the
constraints on the fly to give an instant visual feedback.
Figure 5 presents a screenshot of the editor’s view of the layout
model. The layout statements are grouped by the layout
characteristic they are primarily addressing. In case conflicting
constraint sets have been generated the last statement that the
designer has entered and the one that caused the conflict is
highlighted red.

220

Not all of the four layout characteristics can be handled
independently from each other. First, the containment
constraints the order, orientation and size characteristics and
second, the element order constraints the orientation and the
element size. To manage these interdependencies we define a
general order in which the statements are processed based on
the layout characteristic they are mainly addressing: Like
depicted by the screenshot in figure 5 we process the
containment-related statements before the order-related ones
Thereafter the orientation-related statements and finally the size
-related statements are processed.
After a suitable set of constraint generating functions has been
identified, the designer can check the resulting layout for its
adaptivity to manage certain context-of-use scenarios by
browsing through a set of predefined contexts-of-use.
Predefined contexts-of-use contain further context-specific
layout statements that have been specified independent from a
certain application and are reflecting the capabilities of a device
or the preferences of a user that are already known at design-
time. Like illustrated in figure 1 the layout statements of
predefined contexts-of-use are merged to the layout statements
of the application to simulate the user interface layout. In the
following section we describe how the layout statements are
evaluated to constraints in our run-time environment.

5. CONSTRAINT GENERATION AT
RUN-TIME
Following the idea of using software agents to coordinate the
user interface management system [3] we are using an agent-
based run-time environment, the Multi-Access Service Platform

(MASP) to generate and adapt user interfaces. But instead of
requiring a hierarchical organization to several agents like
proposed by PAC-Amodeus [11], the communication flow
between the agents in our environment can be flexibly
configured based on the requirements of the interactive
application. As illustrated by figure 6 the environment is driven
by several agents where each interprets one user interface
model. In contrast to other approaches [3,15] that refine a user
interface model at design-time to end up with a compiled
version of the user interface, we keep all of the models alive at
run-time. This allows us to more flexibly react to context-of-use
changes that have not been desired at design-time by specifying
the required adaptation on an abstract model-level.
Each agent is comprised of two parts: a tuple space to store the
instantiated model information and a manager containing the
semantics and functionality to manipulate the model
information. Whereas the manager has complete access to its
own tuple space it is not aware of the other agents connected to
the system. We connect the agents by using tuple space
operations (atomic read/manipulate/write) and the eventing
system of a tuple space. The eventing system allows a manager
to register for changes of another tuple space. Each agent,
handling one user interface model is instantiated once to run a
single application, but is able to handle several sessions for
different users that are accessing the same application.
The communication processes between all agents are not hard
wired but instead configured for each application based on the
user interface models that are relevant for the applications
domain. Therefore we can easily add the layouting model agent
as an additional component to the MASP..

Service Service
Model Agent

Task Model
Agent

Domain
Model Agent

Service

Context
Model Agent

Channel

Channel

AUI Model
Agent

CUI Model
Agent

Distribution
Model Agent

FUI Model
Agent

Layouting
Model Agent

Figure 6: The layouting model is embedded as an agent into
our run-time environment.

As illustrated by figure 6, the layouting agent registers itself for
events from the distribution agent, which calculates the
distribution of a presentation task set to all platforms that are
connected to the MASP. For each new or updated user interface
distribution the layouting agent receives an event containing all
the elements of the user interface that should be simultaneously
presented on a specific platform. While the distribution agent is
required to calculate a reasonable user interface distribution
based on the actual context of use, the layout agent has to layout
a presentation for all the individual elements it receives from the
distribution agent for a single device.

Figure 5: The actual layout model consisting of a set of
statements that are grouped by the layout characteristic they

are targeting to.

221

As soon as such an event from the Distribution Model Agent
has been received the Layout Model Agent reads the actual
context-of-use and evaluates all of the layouting statements that
are relevant for the actual user interface screen.

Figure 7 depicts the internal setup of a Layout Model Agent and
its internal as well as its external communication. The agent
senses for two external events to happen: First, for a new
distribution of the user interface and second, for a change of the
context-of-use. Both stimulate the agent to select and assemble
the layouting statements. The selection of suitable statements is
done by the following way:
1. Retrieve layouting statements for the actual context of use

that have been specified independently from the
application and that specify layout requirements to address
a certain user or a specific device.

2. From the ordered statement list select the statements for a
screen s that:

a. address application wide layout interpretation
b. address reoccurring elements that are used by s
c. directly address the screen s
d. are defined for this application and the relevant

context-of-use scenario.
The statements that have been selected and ordered by priority
are then evaluated to a set of constraints by the statement

evaluator. Thereafter the layout agent finally solves the new
constraint setup using the cassowary constraint solver [1].
Solving the constraints results in absolute positions for each
element of the user interface that are stored within the layouting
agent’s own tuple space. The CUI Model Agent is registered for
updates to the absolute positions and therefore receives updates
for each change of these coordinates that the CUI Model Agent
will use to re-position the user interface elements.
Different to other approaches that use a constraint solver to
calculate the user interface layout, we introduced an additional
level of abstraction for defining the user interface layout by a
separate layout model that includes statements that are derived
using an interactive and tool-supported process and are
consistent to the other user-interface models. Since we decide at
run-time which statements to evaluate to generate constraints,
we can flexibly address layout adaptations to new contexts-of-
use scenarios that can even be independently specified from an
application but have been introduced together with a new device
or a new kind of user type.
In the next chapter we present first results of an evaluation we
did to test the efficiency of our approach. The evaluation has
been done as part of a research project where we realized a
multi-modal cooking assistant that supports the user in finding
recipes, creating a shopping list and guides the user step by step
through the cooking process.

6. EVALUATION
We tested our approach regarding two aspects: first, the
efficiency at design-time for the designer to generate the layout
model by using the layout model generator. Second we tested
the efficiency of the implementation to generate and solve the
constraints in our run-time system.

6.1 Design Efficiency
To test the design efficiency of the approach, we asked a
designer to realize a layout for an interactive cooking assistant
application based on a textual description of a scenario of how
the cooking assistant should support the user. The designer
created three screens and one user interface distribution
scenario where one screen is split to two different devices: The
initial screen asks the user to search for a recipe based on
several search options. The second screen is about assisting the
user to generate a shopping list by asking the user which of the

Figure 7: Each Model Agent is comprised of a manager
that encapsulates the agent’s functionality and a tuple

space to store its data.

Figure 8: The screen for the recipe search and the final box-based layout result of the layout-model

222

required ingredients are available and which are not available.
This screen could be split into two parts where one part gets
distributed onto a PDA that could be taken along during
shopping and the other part remains on a touch screen in the
kitchen. The last screen assists the user during cooking by
offering multi-medial help, controlling the kitchen appliances
and by splitting each recipe into a list of steps containing the
required ingredients as well as a detailed description about what
to do in each step. Figure 8 presents the initial screen for the
recipe search as it has been realized by the designer and the
result of the model-based layouting using the box-based layout
of the editor.
Independently from the designer we asked a developer to follow
a model-based development approach. Initially both, the
designer and the developer shared the same textual description
of a scenario for the cooking assistant. Based on the results of
the model-based development approach including a fine grained
task model, a domain model and an AUI model, we then derived
a model-based layout that should correspond to the screens of
the designer as close as possible. Finally we measured the
amount of statements that have been required to end up with the
same layout as the designer has realized.
Each screen has a different layout complexity consisting of a
number of elements that are nested based on the abstraction
level of the task model.

Table 1: Complexity of the screens that need to be layouted
and the amount of statements required. 1) Elements to

layout, 2) Abstraction levels 3) Number of containment-, 4)
orientation-, 5) order- 6) site-related statements 7) total

amount of statements

Table 1 lists the level of complexity (number of elements, and
the maximum nesting level utilized) for the three screens that
have been sequentially layouted and the amount of statements
that were required to realize the layout of the designer. After the
first screen has been layouted the derived statements have been
reapplied to the second screen and finally to the third screen.
The second column of table 1 lists the different levels of UI-
complexities that we have considered by the three screens:
Whereas the RecipeFinder screen has a lot of elements (19) and
a less nested structure of 7 levels, the Cooking Aid screen has
15 elements on 10 nesting levels as it is composed of various
parts that are not directly related (e.g. the multi-medial help and
the appliance control). For the ShoppingList screen two further
layouts have been designed that are reflecting a distribution
scenario where parts of the screen get distributed to a PDA (4
elements) and some parts (9 elements) remain on the screen. By
analyzing the amount and type of statements that were required
to layout the screens in the same way like the designer did,
several observations have been made and are listed in the
following paragraphs:

• Containment and order related statements can be derived
from a task tree efficiently.

• If the task model is used to derive the containment and
atomic tasks are identical to individual widgets, the
introduction of further containment-related statements is
required (for our application we required 8 containment
statements for grouping checkboxes for the recipe search
screen).

• Size related statements can be defined very efficiently on
an application wide, global level based on the information
of the design models (such as weighting input to output
tasks, or by giving control tasks that usually end up
presented as buttons a global minimum /maximum size
restriction).

• The aspect ratio has to be defined pictures that should be
presented within a task (using a size relational statement)
which can be automatically derived at run-time when
loading the picture.

• The orientation related statements can only be very limited
specified on a global level but have to be reapplied for
most of the individual screens. This is because our design
models have no information that can be used to derive an
initial orientation. So we applied a heuristic approach that
produces elements with a balanced width to height relation
by switching the orientation of the elements. Therefore we
toggle the orientation horizontal to vertical and vice-versa,
for each nesting level that has been derived from the task
model.

• The container, order and size related statements of the
layout model helped to assemble layouts for user interface
distributions that have not been explicitly addressed at
design-time. Orientation related statements caused
problems as after a distribution has been initiated the re-
orientation of the remaining user interface parts were not
expected by the users.

6.2 Efficiency at Run-time
In order to check the run-time performance of generating and
solving the constraints, we measured the performance of both
the statement evaluation and the constraint solving separately.

Screen 1) 2) 3) 4)
1.Recipe
Search

25 142 <1ms 14 ms

2.Shopping
List

20 107 <1ms 8 ms

3. Distribution
PDA,Touch

8,10 56,81 <1ms 8,10ms

4. Cooking Aid 23 130 <1ms 13 ms

Table 2: Complexity of the screens the need to be layouted
and the amount of statements required. 1) Number of

statements to evaluate, 2) Number of evaluated constraints 3)
Measurement for statement evaluation (ms) 4) Duration for

constraint solving (ms)

Table 2 shows the results of the performance evaluation for our
cooking assistant application. For each screen we have
measured the amount of statements that have been selected as
relevant for layouting each screen (second column) and the
amount of constraints that have been generated by evaluating
the selected statements. It could be observed that currently an
average of 5 to 7 constraints is generated by one statement. In
the last two columns the measured average calculation time (of
three runs) for selecting the required statements and the duration

Screen 1) 2) 3) 4) 5) 6) 7)

1.Recipe
Search 19 7 9 3 3 4 19

2.Shopping
List 13 8 0 6 1 2 12

3. Distribution:
PDA,Touch 4,9 8 0 1,2 0 0 0

3.Cooking Aid 15 10 0 2 2 4 8

223

for solving the generated constraints are listed: We could
observe that the time to choose between the statements that are
relevant for a specific situation was always under 1ms and the
amount of constraints (and the amount of selected relevant
statements) is related to the solving time. Thus, the bigger the
difference between the overall number of layouting statements
and the number of selected statements the shorter constraint
solving times can be expected.

7. CONCLUSION
The information of the design models of a a model-based
interface design approach can be interpreted to derive a layout
model. We describe these interpretations by statements that
create a layout model that we evaluate at run-time. This
approach offers two advantages: First, since the statements are
interpreting the design models, they ensure a consistent user
interface layout and second, as the statements are evaluated at
run-time, they enable flexible context-of-use adaptations even to
situations that have not been directly considered during
application design.
We are currently investigating further evaluations as the
initially evaluation data is based on a relatively small
application. Although we initially hoped to identify a set of
predefined layout derivations based on preexisting design
models that can be generally applied for all applications, we are
now trying to classify application types and try to figure out if
we can support the layout designer by proposing different
statement sets based on the application type.

8. ACKNOWLEDGMENTS
We thank the German Federal Ministry of Economics and
Technology for supporting our work as part of the Service
Centric Home project in the Next Generation Media program.

9. REFERENCES
1. G. J. Badros and A. Borning; The Cassowary linear

arithmetic constraint solving algorithm; In ACM
Transactions on Computer-Human Interaction, 2001

2. M. Blumendorf, S. Feuerstack, S. Albayrak; Multimodal
User Interfaces for Smart Environments: The Multi-Access
Service Platform; Accepted as demo paper for ACM
Advanced Visual Interfaces Conference 2008; Napoli, Italy

3. G. Calvary. et all; A unifying reference framework for
multi-target user interfaces. In: Interacting with
Computers, Vol. 15, No. 3. pp. 289-308, 2003.

4. J. Coutaz; PAC: An object oriented model for
implementing user interfaces; In:SIGCHI Bull., vol. 19, no.
2, pp. 37--41, 1987

5. S. Feuerstack, M. Blumendorf, S. Albayrak; Prototyping of
Multimodal Interactions for Smart Environments based on
Task Model; Workshop on Model Driven Software
Engineering for Ambient Intelligence Applications,
European Conference an Ambient Intelligence 2007,
Darmstadt, Germany.

6. J. Fogarty and S. Hudson; GADGET: A toolkit for
optimization-based approaches to interface and display
generation, 2003.

7. K. Gajos and D.Weld; SUPPLE: Automatically Generating
User Interfaces; In: Proceedings of Conference on
Intelligent User Interfaces 2004, Maderia, Funchal,
Portugal; pp. 93-100, 2004

8. H. Hosobe (2001), A modular geometric constraint solver
for user interface applications, in 'UIST '01: Proceedings of
the 14th annual ACM symposium on User interface
software and technology', ACM Press, New York, NY,
USA, pp. 91—100

9. K. Gajos and D. S. Weld, Preference elicitation for
interface optimization, UIST '05: Proceedings of the 18th
annual ACM symposium on User interface software and
technology, 2005 New York, NY, USA

10. J. Nichols, Brad A. Myers, Thomas K. Harris, Roni
Rosenfeld, Stefanie Shriver, Michael Higgins and Joseph
Hughes. "Requirements for Automatically Generating
Multi-Modal Interfaces for Complex Appliances," IEEE
Fourth International Conference on Multimodal Interfaces,
Pittsburgh, PA, Oct 14-16, 2002a. pp. 377-382

11. L. Nigay and J. Coutaz, Formal Methods in Human
Computer Interaction, Ch. Software architecture
modelling: bridging two worlds using ergonomics and
software properties, Springer Verlag, pp. pages 49-73,
1997

12. F. Paterno: Model-based Design and Evaluation of
Interactive Applications. Springer Verlag. Berlin 1999.

13. K. Richter (2006), Transformational Consistency, in
'CADUI'2006 Computer-AIDED Design of User Interface
V'.

14. A. Sears. Aide: a step toward metric-based interface
development tools, pages 101–110, 1995

15. J. Vanderdonckt; P. Berquin, "Towards a very large model-
based approach for user interface development," User
Interfaces to Data Intensive Systems, 1999. Proceedings ,
vol., no., pp.76-85, 1999

16. J. Vermeulen, Widget set independent layout management
for uiml, Master’s thesis, School voor Informatie
Technologie Transnationale Universiteit Limburg, 20

224

