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Abstract—The development of Augmented Reality (AR) 

applications is still driven by development at source-code level. 

Although recent approaches focus to standardize AR 

functionality, to our knowledge a declarative and model-driven 

design (MDD) has not been applied for AR development so far. 

MDD approaches have been successfully applied to model user 

interfaces for a wide spectrum of modes (such as speech-

command interfaces, or remote controls) and media such as 

HTML, 3D, and smart phone interfaces for instance. In this 

paper we propose a MDD approach for modeling seamless 

interaction between Web and AR interfaces. Therefore we 

implemented a prototype of a web furniture shop that supports 

arranging furniture in an augmented reality to prove our 

approach. We then present our approach of modeling a reality 

spanning Drag-and-Drop interaction between a 2D browser 

and an AR scene. Finally, we discuss the issues that we were 

confronted with to support reality spanning interaction like 

switching interaction modes and coordinate systems and 

present limitations that we have experienced with using other 

control modes, like a Wii-Controller or glove-based gesture 

detection. 

Augmented Reality, Model-based User Interface Design, Web 

Interfaces, Human Computer Interaction. 

I.  INTRODUCTION 

Augmented reality (AR) promises to enhance the real, 
physical world as we see it with additional information. 
Recent research activities target to evolve standards to 
support the authoring and distributing of AR applications 
[12]. 

 Although a lot of AR applications (e.g. Yelp and Google 
Sky) have been built, the support for implementing AR 
applications is still limited to happen at source code level, 
such as, frameworks (e.g. Junaio) and libraries (e.g. 
ARToolkit). Declarative modeling that has been successfully 
applied to design multi-platform user interfaces and has been 
proven to generate voice [21], web [3] and 3D interfaces [11] 
for instance, has not been considered for AR application 
development so far. 

A declarative modeling of user interfaces promises to 
reduce development costs and time by offering structured 
processes that enable to design the general (abstract) way of 
interaction with the user first and then systematically derives 
more specific interfaces for different platforms thereafter. 

In this paper we propose such a declarative modeling 
approach to design interaction that can span the realities 
between a web interface and the AR.  To describe our 

approach we focus on a furniture online shop prototype that 
we have declaratively modeled and that support seamless 
reality spanning interaction between the 2 dimensional web 
interface and the 3 dimensional AR scene by an augmented 
Drag-and-Drop. 

Different from other approaches that tightly couple the 
Drag-and-Drop implementation to a particular application or 
to basic operation system functionality, such as copying files, 
or ejecting CDs, we propose a declarative design. Therefore 
every element of a user interface, that we call an interactor, 
consists of an abstract mode and media independent user 
interface model (AUI model) and several concrete interface 
models (CUI)s to address the specific interaction behavior of 
different modes and media. Our approach is driven by the 
idea to enable the design of a seamless interaction between 
different modes and media. To explain our approach we 
focus on a mouse-based mode to control the interaction in 
both, the web and the AR. For the mouse to work seamlessly 
while crossing realities, we introduce the Reality Frame 
concept. The declarative modeling enables to add further 
modes easily later on. New interaction modes can be easily 
added and changed by manipulating the declarative models 
instead of introducing changes at the code level. 

The paper is structured as follows: The next section 
introduces the general “Drag-and-Drop” paradigm. 
Thereafter in section 3, we review related work. Section 4 
introduces our prototype, a web application to buy furniture 
that enables a user to interactively experience the different 
furniture and virtually arrange it in an augmented 
environment. Then, in section 5 we explain our approach of 
declaratively modeling the augmented Drag-and-Drop and 
our concept of a Reality Frame. Thereafter in section 6 we 
discuss the experienced problems like for instance the 
required merge of different coordinate systems and the 
advantages and downsides of different modes of interaction 
and state future work. Finally, we give a conclusion in 
section 7. 

II. THE DRAG-AND-DROP 

With the first graphical interfaces the introduction of the 
mouse significantly enhanced the interaction that was 
previously limited to keyboard inputs. The mouse enabled 
direct manipulation and implementing a desktop metaphor 
(files and folders). Drag-and-Drop that was initially 



developed for the Apple Lisa
1
 was already used in the early 

80ies for supporting file operations like to drag files to a 
certain folder or the desktop. At the same time Bolt 
introduced the “put that there” scenario [4], which proposed 
a multimodal way of moving objects around by using 
gestures and speech commands on a graphical interface. 

The basic sequence involved in Drag-and-Drop is: 

 Press, and hold down, the button on the mouse or 
any other pointing device, to "grab" the object, 

 "Drag" the object/cursor/pointing device to the 
desired location, 

 "Drop" the object by releasing the button. 
 

Even through the Drag-and-Drop is well known, it has 
been established only for very basic kind of actions like:  

 

 Dragging a data file onto a program icon 

 Moving or copying files to a new location 

 Rearranging widgets in a graphical user interface to 
customize their layout 
 

On the one hand it is often not obvious where and in 
which cases the Drag-and-Drop works, which is a usability 
problem.  On the other hand the Drag-and-Drop is hard to 
implement since Drag-and-Drop modeling approaches are 
still missing [14]. Looking at popular programming 
languages, like Java for instance, the Drag-and-Drop has to 
be implemented manually and can be tedious and error-prone 
as there is no generic way to implement it once and use it for 
several components. Thus, for each Swing GUI component it 
includes implementing various interfaces and consists of the 
following steps to create a drag-able element:  

Implementing a DragGestureListener, a DragSource, 
call the createDefaultDragGestureRecognizer, and creating a 
DefaultDragGestureRecognizer. To receive a drop, a 
component has to implement the DropTargetListener 
interface, an instance of DropTarget needs to be created and 
a drop method has to be implemented to add the dragged 
data. 

Nowadays there are a lot of different kinds of devices 
and controls available requiring the Drag-and-Drop to be 
implemented very differently. For instance, for touch 
interfaces on common smart phone operating systems, like 
Android and iPhone, a long-press-then drag substitutes the 
click-and drag of a Desktop PC. 

The general idea of our approach is to enable a reality 
spanning interaction between different modes and media by 
supporting declarative modeling of interaction that enables to 
adapt and personalize device-spanning interaction based on a 
graphical notation that ease the interaction design as it 
abstracts from the tedious  code-level development. 

                                                           
1
 Bruce Horn, On Xerox, Apple and Progress, 

http://www.folklore.org/StoryView.py?project=Macintosh&

story=On_Xerox,_Apple_and_Progress.txt, last checked 

20/04/11 

 We demonstrate the approach by a furniture shop 
prototype that we have implemented and that supports Web 
and AR media as well as a mouse and a Wii-remote mode of 
control. 

III. RELATED WORK 

Our work is based on the idea of combining earlier works 
about multimodal interaction and model-driven development 
of user interfaces to enable a developer to assemble 
multimodal interfaces. Model-driven development research 
has resulted in several connected design models that have 
been summarized by the Cameleon Reference Framework 
[8] and by user interface languages such as USIXML [17]. 
But it has been applied to develop interfaces for pre-defined 
platforms only, such as to design interfaces for small screens 
of cell phones, for speech interfaces or to develop television 
and 3D interfaces for instance. To our knowledge AR 
applications haven’t been modeled by MDD approaches so 
far and Drag-and-Drop interactions have only be addressed 
by modeling to a very limited extend focusing on graphical 
desktop interfaces [14]. 

Different to these approaches our interactor-based 
interfaces can be flexibly extended to new modes and media 
by adding new interactors and mappings to a running system. 
Our approach is inspired by the findings of multimodal 
theory [2] and the iCARE platform [5] that supports building 
multimodal interaction out of components that are connected 
based on the CARE properties. These properties describe the 
relations between different modes, such as their 
complementary, redundant or equivalent combination. The 
Open Interface Framework [15] that supports prototyping of 
multimodal interactions out of components similar to our 
approach does not consider model-driven development for 
the design of interfaces based on abstract and concrete 
models. 

Although the main feature of our work is the Drag-and-
Drop transition of virtual objects from a web browser to 
reality (through augmented reality), the simple task of 
dragging in a 3d user interfaces is already a challenge. 
Therefore, in AR, much of the work done with Drag-and-
Drop is based on moving objects between displays/surfaces, 
just dealing with 2d, like Rekimoto’s pick-and-drop [19], 
which is grabbing an object in one display and putting it in 
another, or like Rekimoto and Saitoh hyperdragging [20], 
which is dragging 2d objects through displays. 

For moving objects in 3d, it is necessary different 
techniques or equipments, which must deal with the Z axis. 
Some of the input techniques for 3d are: gestures [1], 3d 
pointer devices [24] (3d mouse, Wii-controller) and using 
markers (similar to gestures but simpler) [16, 6]. 

One of the first systems to use Drag-and-Drop across 
dimensionalities, transitioning from 2d to 3d and vice versa, 
was Hollerer and MacIntyre system’s EMMIE [7]. A system 
designed for collaboration (with even the possibility of 
remote users). It used several displays like PCs, tablets, a 
projector, HMD (for augmented reality), so that the user 
could choose the best to work with.  

A more recent work is Petersen and Stricker attempt to 
make a continuous natural user interface [18], which is a 

http://www.folklore.org/StoryView.py?project=Macintosh&story=On_Xerox,_Apple_and_Progress.txt
http://www.folklore.org/StoryView.py?project=Macintosh&story=On_Xerox,_Apple_and_Progress.txt


system with a more intuitive interface that uses gestures to 
control AR objects. The user can, for instance, point to select 
an object, and use his hand to drag it and drop in a different 
display. The focus is the simplified transition between 
devices.  

Another project is the hybrid interface from Carvalho et 
al. [9], in which users can do transition between 2d WIMP 
interfaces, augmented reality and virtual reality (VR). This 
way the user experience with WIMP interfaces is exploited, 
and AR and VR can be used to better visualize and 
comprehend the 3d scene. The project is continued in [22], 
where the Open Interface framework is used to transform a 
desktop application into a hybrid interface (WIMP, AR and 
VR), and it is illustrated how Open Interface framework can 
facilitate the development of applications with several 
techniques of user interaction. 

Albeit our work is similar to projects like EMMIE or the 
continuous natural user interface, our approach is focused on 
the Drag-and-Drop modeling and applying to work between 
the web browser and the AR. 

IV. THE FURNITURE SHOP 

To test our approach we implemented a prototype of a 
web shop that allows customers to buy furniture. Therefore a 
customer can choose between different furniture and fill up a 
shopping cart. Although the shopping cart is filled in a 
traditional way by browsing the web site and clicking on 
“buy” buttons, it is encapsulated by the reality frame and 
therefore extended with a reality crossing Drag-and-Drop 
support. 

Figure 1 shows the actual shopping cart that is part of a 
typical online shop and has been enhanced by a Reality 
Frame. To enable a reality crossing Drag-and-Drop, the 
Reality Frame needs to be activated, which triggers the 
calibration of the system. For this the system displays a 
visual marker on the monitor to figure out the relative 
position of the monitor in its environment (figure 2). The 
calculation involves two steps: first, the position of the 
marker is calculated using ARToolkit [13], which is 
illustrated by the red border. Second, the monitor size is 
calculated by retrieving the browser screen resolution and the 
actual DPI setting. Both are detected by using the Javascript 
browser API and the result is presented as a blue frame 
around the screen of the monitor. 

The calibration works best, if the monitor brightness and 
contrast are reduced and the camera is directly facing the 
monitor. The marker size could be relatively small – we got 
satisfying detection rates with 150pixel sized tags in 2 meter 
distance – but the viewing angle of the monitor limits the 
angle from which the camera can capture the tag. With a 
common 17 inch monitor we got good detection rates if the 
angle is varied maximal 15 degrees horizontally and 
vertically. The actual marker detection happens in 
milliseconds. Since the tag gets only displayed until it could 
be recognized the first time, the user recognizes the 
automatic calibration only by a short flickering of the web 
interface. 

Thereafter the position of the monitor in the camera view 
is returned to the web browser, and the Reality Frame with 

the included shopping card is repositioned so that it matches 
the relative x and y positions of the monitor in the AR scene. 
This new position can be seen in figure 3. The repositioning 
of the Reality Frame in the browser extends the freedom of 
movement of the mouse pointer in the actual AR 
representation. The original shopping cart position (figure 1) 
prevents dragging objects out of the browser to the left.  

The activated Reality Frame is changed to display a 
dashed border and enables the shopping card items to be 
dragged out of the frame. As soon as the user picks up an 

 

Figure 1. The shopping cart that is part of a common web shop while 

dragging an object across the reality frame that is illustrated by the dashed 

line. Unfortunatly the application we used to take the sceenshot has hidden 

the mouse pointer. 

 

Figure 2. If the Reality Frame is activated, the Autocalibration detects the 

monitor position by displaying a visual marker and switches back to the 
web site after the marker has been detected. 



item of the shopping list and crosses the dashed line of the 
shopping cart, the online shop website site is removed from 
the web interface and automatically replaced by a video 
stream that shows the actual AR environment. The currently 
dragged item is toggled to a 3D VRML representation in the 
AR scene and the user can additionally move the object on 
the Z-axis (by using the mouse wheel) to position it exactly 
in the AR environment like shown by figure 4. 

Figure 5 depicts the result of several objects that were 
successfully dropped to the AR scene. Since the AR scene 
shows the reality frame as well (the blue-colored border 
around the monitor in figures 3 and 4) the user can easily 
navigate back to the web site by crossing the reality frame 
around the monitor with the pointer again. In the AR scene 
the pointer is shown as a red dot (see figure 3 and 4) and 
raises its size if it is moved closer.  

V. MODEL-BASED DESIGN OF MIXED-REALITY  

INTERACTION 

For the design and implementation of mixed-reality 
interaction we apply a model-driven design of user interfaces 
(MDDUI) process. This has the advantage that part of the 
interface semantics (the actual widgets and the interaction 
with them) such as for describing commands, lists or 
selections need to be modeled only once and can be 
subsequently re-used in interfaces for different media (like 
web interfaces, speech or augmented reality scenes). Actual 
MDDUI approaches [8, 17] describe these semantics that can 
be shared between several media by Abstract User Interface 
(AUI) models. Media specific designs are captured within 
Concrete User Interface (CUI) models. 

MDDUI approaches are typically driven by model-to-
model transformations and therefore implement a design 
process that first describes the interaction on a very abstract 
level (e.g. by task models) and then continuously refines 
these models by applying transformations to more concrete 
ones until they end up with a final user interfaces for several 
devices. 

Although these MDDUI approaches have been proven to 
work well to generate interfaces for different devices and 
modes, like speech or 3D interfaces for instance, they end up 
with isolated interfaces for each targeted combination of 
mode and media which has several general disadvantages: 

 

Figure 3. After the Reality Frame has been activated, the online shop 

presentation is faded out and the shopping cart is moved to reflect the 

detected position of the monitor . 

 

Figure 4. For the augmented scene, we are relying on a fixed camera that is 

focused into the actual part of the room where after crossing the reality 

frame the browser continues the dragging action, but changes to the 
augmented scene and a 3D representation of the object. 

 

Figure 5. The final scene after droping some objects out of the web browser. 

The blue frame displays the reality frame and the red dot the mouse pointer.  



1. A form of interaction like a Drag-and-Drop that 
spans mode and media could not be implemented. 

2. Multimodal interfaces that combine several modes 
and media for a more natural interaction can only be 
implemented to a limited extend: Changes of devices 
or addition of modes require processing all design 
models and their transformation again to generate 
new interfaces. 

3. Starting a design process with a very high level of 
abstraction (like by task models) requires a 
developer to have extensive anticipation skills and a 
deep knowledge of the transformational system to 
imagine how the final interfaces will behave and 
look like. This is often mentioned as reason why 
MDDUI has not been adapted by the industry so far 
[23]. 

To address these challenges and to implement the 
augmented Drag-and-Drop of our prototype we enhanced the 
Multimodal Interaction Framework (MINT) [10]. With the 
MINT framework, multimodal user interfaces are assembled 
by interactors. Different to the transformational 
development, the assembling of interfaces by predefined 
elements is a common user interface development approach 
that is often supported by graphical user interface editors. An 
interactor mediates information between a user and an 
interactive system. It can receive input from the user to the 
system and send output from the system to the user. 

For modelling the furniture prototype we equipped each 
interactor with three different models: One AUI model that 
specifies the general behaviour and two CUI models: one 
describes the graphical interface presentation behaviour in 
the web browser and a second CUI model that describes its 
appearance and behaviour in the AR scene. Every model of 
MINT consists of a static description that describes the data 
of all interactor as well as a description of each interactor’s 
behaviour. We describe the former one by class models and 
the latter ones by state machines.  

Figure 6 shows the static AUI model structure: all AUI 
interactors are derived from the basic Interactor class that 
sets a unique name and enables storing the actual states of an 
interactor. From the basic abstract class the central Abstract 
Interactor Object (AIO) class is derived that describes all 
abstract interactions, for that an interactor can be offered and 
includes already basic interface navigation capabilities (to 
the previous and next AIO respectively). The static AUI 
model distinguishes between interactors that are primarily 
designed for capture user input - these are derived from the 
Abstract Interactor Input (AIIN) class and Abstract Interactor 
Output (AIOUT) interactors that are used to resturn output to 
the user. This distinction conforms to the separation between 
mode and media and therefore helps to distinguish which 
parts of an interface can be handled by what kind of device. 

 For the sake of brevity we focus in the following on an 
explaining of the two central interactors that we rely on to 
model the Drag-and-Drop: The overall choice container 
element (AISingleChoice) and its individual list elements that 
can be chosen (AISingeChoiceElement). Although the 
distinction of the choice into two elements seems quite 
unfamiliar in the first moment, it is the result of the strict 

separation between input and output elements in the AUI as 
well as driven by the idea of modelling self-executable 
interactors that can be moved between modes and media and 
have an individual behaviour model. In the following 
sections we describe both, the overall AUI model and then 
the graphical web and the augmented scene CUI model 
implementation. Finally, based on these findings we report 
how the Drag-and-Drop is modelled and implemented for the 
choice interactor. 

A. AUI Choice Interactor 

Figure 7 shows the behaviour model of an element of a 
choice. It implements the basic lifecycle of all AIOs. After 
it’s initialization it can be organized, presented and 
suspended. Each AIO that is part of an interface presentation 
is organized to enable navigation between it and its 
neighbours. During an AIO is presented it can be in the 
user’s focus, while the user navigates using previous and 
next commands. Finally an AIO element is suspended if it is 
no longer part of the interface presentation. 

An  AIChoiceElement supports to be dragged to another 
AIChoice and to be chosen. The dragging process is part of 
the interface navigation and can only be issued if the element 
is in the user’s focus. After an AIChoiceElement has been 
droped to its destination it is set to the state “listed” again. 
The element selection is managed in parallel to the interface 
navigation but choosing an element is only possible if it is in 
the current user’s focus. 

The state machine-based element specification supports 
calling functions and sending events to other elements’ state 
machines. We use this functionality to move the user’s focus 
with the element navigation to the next, previous or parent 
one. And we ensure that only one list element is chosen any 
time for a SingleChoice (see figure 7). 

B. Connecting Modes to the Interface 

In the last section we described how we model an 
interface element as an example for the media part of an 
interface. To control the interface we need modes. These can 
be described in the same way like the media, but modes can 
although be flexible combined to offer a multimodal control 
of interfaces. The combination of modes with media is 
specified using mappings. Figure 7 presents the mouse mode 
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Figure 6. Abstract User Interface Model (MINT-ML V1.1) 



specification that we use beneath the Wii-Remote to control 
our prototype. 

The behavior specification of the components of the 
mouse is straight forward as illustrated by the state machines 
of figure 8. We distinguish two different types of states: 
states that describe a continuously ongoing action – like 
moving the mouse and state an action that has already 
happened. The former continuously update data – like the x 
and y coordinates of the pointer when it is in the “moving” 
state.  It communicates its x, y, and z coordinates. The class 
diagram is used to identify the data structure as well as to 
enable device composition. Thus, a mouse is composed of 
components like buttons, a pointer and a wheel for instance. 
A Wii controller description can reuse parts of these 
components like the pointer or the button components. 

C. The Augmented Drag-and-Drop Design 

Now that we have modelled a mouse device, we can 
connect its components to the user interface. We use 
mappings to specify these connections. Mappings rely on the 
features of the state charts that can receive and process 
events and have an observable state. Thus, each mapping can 
observe state changes and trigger events.  

Mappings can be either pre-defined (e.g. to support a 
certain form of interaction with a particular device or to 
implement an interaction paradigm, such as the Drag-and-
Drop that we describe in the following) or specified during 
the application design (e.g. stating that a security critical 
command must be confirmed with a mouse click and a voice 
command). 

Figure 9 depicts the principal Drag-and-Drop mapping 
that we specify using a graphical notation similar to a flow 
chart. The mapping is bound to a (hardware) button and the 

AUI model part. Thus it can be applied for different media. 
Rounded boxes specify observations of state changes 
whereas boxes with sharp edges state events. With cycles 
several different relations could be stated, such as redundant 
or sequential actions for instance.  For the Drag-and-Drop 
mapping we just need the complementary operator (C) that is 
evaluated to true if all observations can be evaluated to true 
in a defined temporal window Tw. 

The mapping is activated as soon as the Button is pressed 
and one AIChoice element (like the AISingleChoiceElement 
of figure 7) is in “focused” state. It then collects all selected 
list elements (aios) and sends them a drag event. As soon as 
the user releases the button while focusing on another list of 
the type AIChoice the mapping sends a drop event to this list 
together with all elements that have been dragged. If the 
button is released without a list in the actual focus the 
complementary operator fails and the elements are dropped 
back to their origin. 

The corresponding behavior of a list that contains the 
Choice elements is depicted in figure 10. It is initialized in 
state listing and is able to receive drop events (e.g. from the 
Drag-and-Drop mapping). All elements that are dropped 
onto the choice are added as new elements and receive a 
drop event thereafter to inform them that they have been 
successfully dropped (this returns all dragged elements to 
state listed as depicted in figure 7). 

D. Differences in Web- and Augmented Scene selection 

Interactors for CUI Modeling 

Different from the AUI model that describes general 
semantics of the interaction, which is independent of mode 
and media, the concrete user interface (CUI) model captures 
mode and media dependent information that is required for 
presenting and controlling the interface on a specific device. 

Since we focus on graphical media as the output format 
for presenting the interface, the management of a coordinate 

IR:IN:Pointer

stopped

move stop

moving

IR:IN:Button

released

press release

pressed

IR:IN:Wheel

IR:IN:Mouse

Mouse

ButtonWheel Pointer

LeftButton RightButton

- x,y- z

stopped

progressingregressing

stopstop regress progress

progress
 

Figure 8. The composition of a mouse (left) and the behaviour models of 
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Figure 9. The Drag-and-Drop Mapping using a pointer and a button. 
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system is the basic functionality that has to be added on the 
CUI model level. The coordinate system needs to be able to 
position elements on the web interface as well as to retrieve 
elements based on the coordinates of a pointer. 

Figure 11 illustrates the relations between the AUI 
models, the graphical CUI model and the final interface 
elements that we use to represent the furniture in the HTML 
interface (an image) as well as in the AR scene (a VRML 
object). Both are derived from the CUI Selectable class, 
enabling them to be selected and used for Drag-and-Drop 
interaction. They share the same properties of the basic 
concrete interactor object (CIO), which enables already 3D 
positioning. Thus, for the representation of the VRML 
elements in the augmented scene, we only need to add the 
depth as well as the object rotation information. 

E. Crossing the Reality Frame 

Since the same input device is used in our system to 
control both the 2d browser interface and the 3d AR 
interface, it was necessary to make transformations between 
the coordinate systems present in the desktop and in AR. 

To make the system more usable we developed an auto-
calibration feature that quickly displays a marker tag in the 
first time of use, tracks and saves this position. Thus, as long 
as the camera is fixed, the system does not need to display a 
marker during its use to recalibrate the AR. 

However, if a similar scale system among different 
monitors and a precise size of the reality frame are both 
requirements, then information on the exact marker size in 
the monitor as well as the monitor’s size is necessary. This 
information is obtained by finding out the screen size and 
DPI, so that the AR scene can be scaled accordingly. 
Therefore we can create a relative coordinate system that can 
work in any screen size automatically.  

Since the mouse is initially being used for user 
interaction, a space in the screen is necessary from where the 
mouse can be used to control the AR (where the 2d mouse 
becomes a 3d pointer). This space is all but the “Select your 
products” box (the reality frame). However, as can be seen in 
figure 1, object moves are limited only to the right, above, 
and under the monitor. Thus the optimal screen placement 
for the reality frame would be the same position of the 
monitor in the camera view, giving the user freedom to place 
virtual objects anywhere around the monitor, but still inside 
the camera view.  

Therefore, the position of the monitor in the camera view 
must be the same position of the reality frame in the browser, 
so that the user can use the entire screen space around the 
frame to move the mouse and execute the drag and drop. 
This is done so that the mouse does not shift its location 
when coming from the browser to the augmented reality. If 
the reality frame position is similar to figure 1, and the 
monitor position is like figure 11, then when the user drags 
something out of the frame the mouse would shift its 
position in the AR scene to the left of the monitor, while it 
actually should be in the right side of the monitor. 

Figure 12 shows some of the measurements necessary to 
adjust the coordinate system, which are explained below. 

The initial steps to calibrate the system are as follows: at 
the beginning of execution, the web browser resolution and 
DPI settings are obtained, and then passed to the AR 
application. The expected marker size is 80 millimetres (red 
color in figure 12). If, for instance, the marker actual size is 
72mm, the AR objects have to be rescaled to 90% of their 
original size. However, this does not correct the monitor 
overlay (the blue-colored border shown in figures 4, 5 and 
12). For that, it is still necessary to make adjustments in this 
particular interface component, which are relative to the 
monitor size (gray color in figure 12). 

The monitor position in the camera view is then passed 
back to the browser, which adjusts the Reality Frame to have 
a similar position. 

After this a correctly scaled system is achieved and the 
remaining issue is about setting the x and y axis ranges so 
that the AR objects can be moved around in the scene and 
still be seen by the camera. For that the distance between the 
monitor and the camera is captured as the z axis relation 
returned from ARToolkit. As an example, with a z of 1000, 
the monitor is approximately 1,5 meters away from the 
camera. Since the center (0,0,0) of the coordinate system of 
ARToolkit is assumed to be the middle of the marker for the 
example shown in figure 12, objects x value can vary from -
450 to 450, and y can go from -400 to 400. 

[in(focused)] drop

/aio=AIChoiceElement.all(dragging);

add(aio) and aio.drop

AUI:AIC:AISingleChoice:presenting

AUI:AIO:AIC:presenting

listing dropped

/ self.unfocus;

AIChoiceElement.focus

 

Figure 10. Choice element behavior description. 
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Figure 11. Relations between AUI, grahical CUI and final AR and HTML 

interface elements. 



Since the user is now using the mouse to control the AR, 
and considering, for instance, Figure 12, when the monitor’s 
resolution is 1024 x 768 (green color), this resolution has to 
be transformed, to 900, the AR width, and 800, the AR 
height, respectively. The proportion of 1,137 for x and 0.96 
for y is obtained by dividing the resolution size by the AR 
size. 

Now we can put together a transformation equation to be 
used by the AR application. Since there is no negative in the 
browser coordinate system, the equation is: 

 
1. X_AR = X_RES/1.137-450  

 

2. Y_AR= (Y_RES/0.96)*(-1)+400 
 

X_AR and Y_AR and X_RES and Y_RES are the values 
of x and y for the AR and browser, respectively. The 
numbers that multiply X_RES and Y_RES are the 
browser/AR rate.  In equation 1, 450 is subtracted (the 
smallest AR x axis’ value), and in equation 2, 400 is added 
(after multiplying by -1, since the y value  has to be inverted 
or else going up with the mouse would make the AR object 
goes down). 

VI. LIMITATIONS AND ONGOING WORK 

As seen in the last section, the reality frame’s position 
has to be equalized with the monitor’s position in the camera 
view for a better usage, and the mouse’s position in the 
screen has to be transformed into an AR position in the space 
(therefore limited to the screen size). These limitations,  
resulting from the use of the mouse, could be overcome by 
using a Wii-Controller or a glove (for hand gestures) to 
control the augmented drag-and-drop, since these devices are 
not limited to the desktop system, as the mouse is. 

The downside of using a Wii-Controller is its small angle 
of view. Since it was originally projected to just cover a 
normal television size (42 inches) as a pointer (while its main 
feature is the motion detection using inertial sensors), it is 
not possible to use it to cover a large area in a room. Thus 

our Furniture Shop application was limited to a small area 
around the infrared optical sensor (the device that projects 
infrared light to be captured by the camera in the controller). 

This field of view limitation of the Wii-Controller is not 
present in the use of gloves, which can address a much larger 
space in the room and mainly depends on the viewing angle 
of the camera that captures the hand movements. But gloves 
have a different issue. Since they can not be used to control 
the web browser interface, the user is bound to use two 
different controlling devices (mouse and hand), having to 
switch between them during the use of the application. Also, 
there is the need for two cameras, one for the AR and one for 
the gestures detection. 

Considering the rotation of objects, it is possible to 
implement some commands with the mouse, such as right 
button click rotates in the x axis, and left button click rotates 
in the y axis, but this can be confusing and cumbersome for 
the user to make the desired rotation. 

The Wii-Controller can be a better solution when its 
embedded gyroscope is used because then, the rotation of the 
controller could be the rotation of the objects. Nevertheless, 
this solution would also involve a two steps control from the 
user, the first for the drag and drop and the second to rotate 
the object. 

A solution using hand gestures has the same problems, 
requiring two different steps. It could also create a number  
of gestures too big for the user to remember. 

Regarding the implementation of the system another 
problem arises. For the augmented reality tracking and 
rendering of virtual graphics the original implementation of 
ARToolkit in C++ was used. Since the objective is to run 
everything inside the web browser, a decision was made to 
stream the result of the AR scene to an embedded flash 
player. With this approach the user can view and use the 
system with just a web browser. The downside of this 
solution is the added latency due to the stream transmission, 
which is noticed by the users. Also, this stream solution uses 
key frames to reduce the bandwidth needed. Thus, it buffers 
and waits for a key frame in the beginning of the execution, 
causing delay to the web browser stream visualization. The 
most appropriate solution in this case would be to switch the 
implementation of ARToolkit for a compatible with the web 
browser, like for instance a flash implementation (e.g., 
FLARToolkit).  

VII. CONCLUSION 

This paper presented a novel approach to design seamless 
interactions between different modes and media. A model-
based approach was used and a drag-and-drop application 
between different media (AR and web interfaces) and 
different modes (mouse and a Wii Controller) was 
implemented. 

Different from other works reported in the literature, our 
work supports the behavior modeling of interface elements 
by state machines, which have been earlier applied to model 
graphical interfaces but not to span different modes and 
media. By means of mappings, modes and media could be 
combined in a declarative manner as well as design 
interaction paradigms like the augmented Drag-and-Drop.  

 

Figure 12. Calculating the coordinate system. 



By combining declarative modeling with flow-chart 
oriented graphical notation, changes in interactions as well as 
support for new media and modes can be done on an abstract 
level instead of code-level (a tedious task even for a single 
device and computing language). The concept of a reality 
frame that was implemented as part of our furniture shop 
prototype proved that reality spanning interaction can be 
implemented and different modes can seamlessly adapt to 
different realities. This was possible by transforming the 
coordinate system and benefiting from the abstract modeling 
of interface elements that can transform themselves into 
different presentation while maintaining the interaction 
behavior that is specified in the abstract user interface model. 
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