
An Agent-Based Architecture for Ubiquitous Multimodal User Interfaces

Andreas Rieger, Richard Cissée, Sebastian Feuerstack, Jens Wohltorf, Prof. Dr. Sahin Albayrak
DAI-Labor1

Technische Universität Berlin
Berlin, Germany

{andreas.rieger, richard.cissee, sebastian.feuerstack, jens.wohltorf, sahin.albayrak}@dai-labor.de

Abstract

Today’s mobile world is made up of heterogeneous
networks combined with various devices with different
characteristics. Progressive users have the desire to
utilize the same services and access the same
information content on all their available devices.
Therefore, an efficient way of providing user interfaces
for multiple devices and their different modalities is
needed. Current service development architectures,
however, do not provide an easy approach for creating
multimodal interfaces on different devices. Our agent-
based architecture, the Multi-Access Service Platform,
offers a flexible solution for ubiquitous service access.
Using an abstract description of content and
interactions, it is capable of generating user interfaces
in languages such as HTML, WML, and VoiceXML.
Therefore, our solution allows a heterogeneous
landscape of devices to access an application server’s
mobile services. The paper concludes with the
description of a mobile service we have implemented
based on the Multi-Access Service Platform.

1. Introduction1

The emerging availability of mobile services offers
great new possibilities and challenges for service users
and service providers: The service users get the chance
to access a new category of services offering new
possibilities. These services are accessed and used
differently than traditional services. The service
providers creating value-added mobile services face
high development efforts because they have to adapt
services to new devices and modalities.

Novel technology is required for adding value to
and improving existing mobile services. Today’s users
are already networked over a broad range of second to
third generation mobile phones that exhibit a wide
spectrum of capabilities and basic qualities. While
PDAs, for example, have relatively large color displays
and powerful processors, mobile phones are
constrained to significantly less display area, storage

1 This project has been funded by the German Federal Ministry
of Research and Education (BMBF) under Grant No. 01AK037.

space and processing power. It is therefore a challenge
for service providers to support as many different
devices as possible, but a task necessary for service
providers who want to remain competitive.
Consequently, the cost of maintaining and adjusting
content and developing user interfaces for a mobile
portal is increasing significantly. Contrary to interfaces
designed for stationary desktop PCs, graphics, text and
other media must be adapted for each class of devices.
As device independency is only the minimum
requirement for mobile services, users soon will expect
voice interfaces as well as the ability to switch between
arbitrary devices and modalities that are most
comfortable to them in a specific situation.

The growing availability of new devices with
improved input and output capabilities will allow a
more transparent, human-behavior oriented way of
human-computer interactions. Multimodal user
interfaces allow services to be used via different
modalities. Based on his preferences, the user can
chose the most suitable modality for his current
context. Multimodal user interfaces are expected to be
easier to use and may be preferred by many users over
existing graphical user interfaces. Additionally, they
have the potential to address new usage scenarios.

Many future applications will feature both
multimodal interaction and device independent access
in combination. Mobile multimedia, in-car information
and entertainment as well as home automation and
control are only a few scenarios where multimodality
and device-independence complement each other
beneficially. To simplify the service usage,
mechanisms for single sign on and session
management should also be integrated. Our work is
motivated by the vision that future user interface
technologies must therefore support all these aspects in
a single, integrated solution.

The paper is structured as follows: The following
chapter describes the problems arising from making
services accessible through different devices and
modalities. Chapter 3 lists requirements for
architectures addressing these problems. Chapter 4
describes our realized architecture for solving these
problems. Chapter 5 describes an application, currently
deployed as a prototype, which has been realized based

on our architecture. Chapter 6 describes related work.
Finally, Chapter 7 concludes the paper with a short
evaluation of our approach and outlines future work.

2. Problem Description

Today’s mobile world consists of heterogeneous
networks, ranging from high-speed Wireless-LAN
networks, to slower GPRS connection and serveral
networks in-between. Not every network offers a full
coverage, so in many situations it may be necessary to
switch devices in order to continue the service usage.

Supporting different devices and modalities is a
huge challenge for service providers. Unfortunately,
there are big differences between the capabilities of
mobile devices. For example, a notebook with WLAN
connection offers greater audio and video capabilities
than a mobile phone running with a GPRS connection.

Because of the large number of different devices
used by mobile users, service providers should strive to
make their services accessible for as many mobile
devices as possible; otherwise, they might lose their
customers. Integrating different modalities pushes the
number of service access methods to a new level.
However, supporting many different devices and
modalities usually leads to a huge development effort,
because user interfaces for each device or class of
devices have to be developed separately. This
procedure leads to an explosion of costs, which is
obviously to be avoided by service providers.

Therefore, an architecture is needed that upgrades
existing mobile services for new devices and
modalities, with as little effort for the service provider
as possible.

3. Requirements

To overcome the problems described above, an
architecture for creating multimodal user interfaces
should fulfill the following basic requirements.
 Model-Based Approach: User interfaces are
represented by a single abstract model. The actual
graphical, voice or multimodal user interfaces are
derived from this abstract model.

 Device dependent UI generation: User interfaces are
generated during runtime. Users should be able to
change their modalities of interaction as well as their
devices on the fly, i.e. during an ongoing session.
The generation process should be adaptive, based on
the device profile.

 Simplified UI creation process: Most user interface
designers are not used to thinking in an abstract user
interface language, because they are more used to
thinking in terms of the look and feel of concrete
user interfaces. Therefore, powerful tools should
support the developers in every stage of
development, supporting the new concept of creating
UIs.

 Provision of seamless services: Users should be
allowed to switch between the devices and
modalities as they like. Ongoing service sessions can
be stopped, stored persistently and continued
seamlessly exactly at the same point on an arbitrary
modality or device.

 Automated sign-on: To increase the usability,
authentication information should be provided by the
user’s personal devices. Thus, the user is only
required to sign on once and join different sessions
later on.

4. Approach

Our approach complies with all requirements stated
in Chapter 3. We have successfully built a Multi-
Access Service Platform (MASP), which allows the
creation of user interfaces for different modalities.
Figure 1 gives a basic overview of the MASP-related
layers, which are described in detail in the following
sections.

4.1. AIDL

Each service’s content has to be described in an
abstract model using a language called Abstract
Interaction Description Language (AIDL). While the
MASP itself implements the Controller layer of the
Model-View-Controller design pattern, the AIDL
language realizes the View layer, as depicted in Figure
1.

Figure 1 - Layer Model

Concrete graphical, voice or multimodal user
interfaces are derived from this single model. It is
necessary to mark the service’s input and output
information (i.e. the content) most relevant to the user.
This process can be done for every modality or device
class to distinguish the amount and order of
information the MASP presents to the user. Learning
yet another new language is not necessary, since AIDL
is completely encapsulated by a tool we provide to add
these information.

A fast and efficient way of user interface generation
is supported by the platform: AIDL is an XML-based
language describing all relevant input and output
parameters of a user interface. As soon as an AIDL
description exists, each service is immediately usable
via all devices. Intelligent general renderings based on

XSL transformations provide first mockups for each
device. Thus, the user interface designer’s task is no
longer to design user interfaces from scratch, but to
continuously refine the automatically generated
interfaces.

The AIDL language supports linking user interface
elements by referring to categories of ontologies.
Expressing semantics with the help of ontologies is an
established approach in the Semantic Web community
[1]. This approach enables the MASP to organize a
library of user interface building blocks and utilize
them within the automatic mockup creation.

The three basic language elements of AIDL are
“data”, “group”, and “scenario”. Data elements
describe primitive types such as character strings,
numbers or links to another service (URLs). The group
type is used to make statements about a list of
elements. Using groups allows setting the order of
content elements, which is very important when using
a voice interface. A “scenario” joins a list of groups
and describes the relationships between them, such as
ordering, orientation, and constraints regarding size
and format of group and data instances. Finally, a
scenario results in a user interface that is rendered on
the user’s device.

Figure 2 – Rendering Process

A fundamental benefit of using AIDL is the

adoption of ontologies to describe user interface
building blocks. Groups are used to select relevant
attributes of a category and are automatically
associated to user interface building blocks to improve
the generic rendering. This helps the MASP to identify
the information that is most important to the user in a
specific situation and to hide irrelevant information.
AIDL groups are similar to the classical views concept
of a database and ontologies are used in a way similar
to tables, because they are used to store the domain
knowledge (the content) of a service.

4.2. Architecture

The Implementation of the Multi-Access Service
Platform [4] has been carried out based on the
Foundation for Intelligent Physical Agents (FIPA)-
compliant [5] Multi-Agent System (MAS) architecture
“Java Intelligent Agent Componentware” (JIAC)
[1][3]. JIAC integrates fundamental aspects of
autonomous agents regarding pro-activeness,
intelligence, communication capabilities and mobility
by providing a scalable component-based architecture.
Additionally, JIAC offers components realizing
management and security functionality, and provides a

methodology for Agent-Oriented Software Engineering
(AOSE). The main features of applications realized
with the JIAC MAS architecture are:
 Modularity: MAS-based applications are mainly
configured by selecting and defining the
participating agents. Therefore, different modules
made up by groups of agents may be changed easily.

 Scalability: Scalability is mainly achieved by
duplicated the agents responsible for critical tasks,
thus distributing the load between multiple identical
agents and removing bottlenecks.

 Adaptability: MAS-based applications may be
reconfigured at runtime, i.e. agents may be added or
removed to adapt the functionality provided. The
newly offered services may be used immediately.

 Distributedness: Mobile agents have the ability to
migrate between platforms that may be located on
different servers.

The Multi-Access Service Platform itself is
distributed in two different versions: The first version
is an enterprise- ready distribution that uses a web
archive file allows the deployment within J2EE-based
application servers. The second option is a micro
edition that uses an internal web server to answer
service requests and is small enough to run in
embedded environments such as home gateways.

Figure 3 – MASP Architecture

The architecture of the platform is divided into
three main roles, as shown in Figure 3:
 The Multi-Access Agent (MAA) receives and
answers service requests from the user’s device. The
MAA is the main access point for all user
connections to the system.

 The Content Processor is responsible for processing
all multimedia content. Under the precondition that
all multimedia content contains semantic description
attributes, the Content Processor can deliver the
optimal presentation according to the user’s device.

 The Mediative Agent (MA) is a broker connecting
the MAA and the services offered by the application
server.

The MASP uses the Java Authentication and
Authorization Service (JAAS) to enable services to
authenticate users and to enforce access controls
mechanisms. Currently an operating system login
module as well as a device independent login module

MMuullttii AAcccceessss SSeerrvviiccee PPllaattffoorrmm

Multi-Access
Agent

HTML

WML

VOICE

J2ME

Micro/Enterprise
Web server C

C
/PP C

apability

Rendering

Caching

Session
Management

Application
Server A

Service

Service

Content
Processor

Semantic

Constraints

Media

MA
Interaction
Description

Device
Transformation

Language
Rendering

Result
Presentation

CC/PP MIME Type

Layout
Improvement

Layout Tool

is provided. The latter is directly connected to a user
management directory of an LDAP server to
authenticate user information. Since JAAS implements
the pluggable authentication module (PAM)
framework, other authentication modules can easily be
added. As shown in Figure 4, each PAM module can
directly connect to an LDAP server to authenticate user
information. A module that connects to the Sun Java
Systems Access Manager in order to provide single
sign-on features is currently being developed.

Figure 4 - MASP Authentification

After the login process both the MASP and the
Application Server may ask the user management for
the user’s authorization to use the service.
Authorization is supported by attaching a service
control list (SCL) to each individual service offered by
a service provider. A SCL contains rules for allowing
or denying access to a service. These rules can be
defined freely for any information available at the time
a service is requested. Currently, predefined rules for
JAAS subjects created during the login and rules for
X.509 certificates that are exchanged in SSL
connections are available. A SCL may be created or
modified by using a security policy editor.

4.3. Session Management

The MASP further enhances multimodal
interactions by providing mechanisms for intelligent
session management. It allows the freezing of a
running service session that may subsequently be
resumed seamlessly via arbitrary other modalities.
Thus, the user may switch seamlessly between devices
without any data loss or synchronization needs. A
running service can be stopped immediately for any
reason and continued later on. The session
management integrates well with the authentication
and authorization layer of the MASP because a list of
sessions is kept for each user, and mechanisms to
switch between these sessions are provided
immediately after the user has logged on.

We distinguish between access sessions and service
sessions: The access session is established between the
device and the MASP as soon as the user connects and
logs in, whereas the service session identifies a service
used by the user.

The access session provides information about the
device used by the user and information about the

context of the service usage. It is associated with a user
object, which also stores additional (persistent)
information about the user, such as a list of known
devices or disabilities, within a user profile. This
enables the MASP to render user interfaces for specific
devices and to consider additional information during
this rendering process. A user can have several active
access sessions at the same time, which enables him to
use different services at the same time.

The service session provides information about the
service usage state. It enables the MASP to control a
user’s service usages, allowing the user to freeze and
resume services, switch between active sessions or
even change the device during service usage. Service
sessions can also be continued if a user logs off and
logs back on later.

The session management is based on the user
management and the authentication mechanisms
described above which enable the MASP to manage a
list of users and to store additional data for each of
these users. The user management also provides the
prerequisites needed to store a list of access sessions
for each user. Each of the stored access sessions is
itself associated with a list of service sessions stored in
a service history. The combination of service and
access sessions allows control of the presence of a user
using the access session, user information management
and the service usage control.

4.4. User Interface Adaptation

The MASP uses CC/PP-based [6] device capability
detection by using a framework specified by the W3C
organization for the detection of device capabilities at
runtime. Using CC/PP enables us to optimize the
automatic user interface generation by taking screen
size, supported media formats and user preferences
into consideration.
The following example explains the basic features of
the process adapting user interfaces by the MASP:
Figure 5 shows the runtime optimization of a service
portal user interface. The scenario “Select Service” has
been defined in AIDL, consisting of a primitive data
type describing the current state of the interaction (“I
can offer you the following services:”) and a group
(“available services”). This group is constrained to be
rendered in a circular layout.

If the user connects to the portal service, the MASP
detects the device capabilities with the help of CC/PP.
In our example, the screen width is 800 pixels, whereas
the AIDL-based scenario asks for an optimal size of
600 pixels (indicated by the “Media Group” parameters
in the figure). The preferred attribute indicates to the
MASP whether the rendered user interface should be
as near as possible to the optimum value, or as far
away as possible from a minimal value.

Based on the screen and group constraints, the
parameters for single images (“Multimedia data”) are
adjusted: Due to the circular layout of the group, the
width of the single images is preferred to be close to

100 pixels. The maximal width is limited by the
maximal width of the superior element, i.e. the group.

Service Presentation:
[width.min=50,

preferred=far, value=50,
priority=200]

Multimedia data:
[width.max=600,

width.min=50, preferred=near,
value=100, priority=30]

Media Group:
[width.max=600,
preferred=near,

value=600, priority=30]

Screen:
[width.max=800,
preferred=near,

value=600,
priority=200]

Static Images:
Corporate Design

[width=450]

Figure 5 – User Interface Adoption

Apart from constraints that are derived from the
user’s device capabilities, there is another option for
constraint definition from the service’s point of view.
In our example, a minimum size constraint is given by
the “Service Representation” parameters, requiring
each single service image to be at least 50 pixels in
width. Specifying constraints on the service level
makes sense if a service is targeting specific audiences
such as people with disabilities who prefer larger text
and images.

5. BerlinTainment

Based on the MASP architecture, we have
developed an application called BerlinTainment, which
utilizes all features of the MASP to create a device
independent and multimodal mobile service.

The BerlinTainment project [7][8] focuses on the
realization of a scalable Serviceware Framework based
on multi-agent technology. The framework is utilized
for the development of context-aware services, i.e.
services providing personalized, location-based
information. As a showcase for the functionality of the
Serviceware Framework, different services in the
entertainment domain have been developed and
integrated into the BerlinTainment demonstrator.

Using the MASP developers were able to focus on
creating the different services comprising the
BerlinTainment demonstrator, rather than creating user
interfaces for each different device. It turned out that
the first mockup of user interfaces on different devices
created by the MASP were usable and had only to be
reworked slightly with layout and graphical
information.

The implemented system benefits from using the
Multi-Access Service Platform, which enables it to
extend its services so that they can be used in a
ubiquitous and seamless way. Examples of supported
devices and modalities include mobile phones via
WML-based user interfaces and telephones via voice-
based interfaces. In each case, the MASP adds value to
BerlinTainment for mobile users by letting them switch
between modalities, as they like. Figure 6 shows two
WML screenshots of the BerlinTainment demonstrator.
The left screenshot shows the portal service, the
HTML interface of which is shown in Figure 5. Note
that the images of the HTML version have been
reduced to textual links due to display size restrictions
of the device. The right screenshot shows a dialog in
which the image size has been automatically adapted to
the constraints of the device.

Figure 6 - BerlinTainment Screen in WML

Using BerlinTainment, a tourist visiting Berlin is
assisted by a set of services including a restaurant,
theater, concert and movie finder, a calendar and a
routing service. An additional service, the Intelligent
Day Planner, integrates the different services, allowing
the user to schedule his activities for a given day and to
receive personalized and location-based
recommendations for each activity, such as restaurant,
cinema or theater visits. Based on these
recommendations, the user is given the possibility to
make reservations for the various activities and plan
his route between the different locations.

A frequent usage scenario highlighting the MASP-
related features of BerlinTainment is using the
“Intelligent Dayplanner” to generate suggestions on
how to spend the leisure time. Most users prefer to start
BerlinTainment on their stationary personal computer,
because using a browser-based interface is more
comfortable for editing user preferences. After
BerlinTainment has made a suitable recommendation,
the user may freeze the service and leave for the
location of the recommended event. While traveling to
the location, the user may want to obtain precise
directions. This may be achieved by dialing the phone

number of the BerlinTainment system with an in-car or
mobile phone and selecting the location-based routing
services by voice control. Reaching the location, the
BerlinTainment user may finally continue the frozen
service session in order to look at the details of the
recommendation, reschedule suggestions or review the
visited location by using a WML-enabled smart phone.

6. Related Work

Driven by the objective of device independency,
UIML [9] proposes an XML language for device
independent user interface design. UIML is not meant
for on-the-fly generation of UIs but for a consistent UI
development across different platforms. The UI
description can be converted into other languages like
Java or HTML.

Recent projects in the HCI community focus on
generation of UI for different devices. The Personal
Universal Controller (PUC) [10] is confined to the
remote control domain and can generate UIs to control
home appliances like VCRs, stereo equipment, ovens
etc. that often comes with a remote control. The PUC
employs an abstract interaction description that
describes manipulable elements of appliances as state
variables.

In [11] the UI generation in PUC is enhanced with
additional semantic information about the controlled
device to improve the quality of the UI. This is the
only related approach we know of where semantic
information about the service usage is used to improve
usability.

7. Conclusion and Future Work

We have presented an architecture that allows the
fast and easy creation of multimodal user interfaces
based on an abstract description language.
Additionally, an application, which made use of this
architecture, has been described. By realizing this
application based on the MASP, we have shown that it
is in fact possible to create a multimodal and device
independent mobile service with less development
effort compared to approaches based on traditional UI
design methods.

The emergence of multimodal interfaces, as
presented in this paper, represents only the beginning
of a progression toward computational interfaces
capable of human-like interactions. Such interfaces
might use context information from a large number of
different input devices and sensors in order to support
intelligent adaptation to the user’s current situation and
usage environment. Integration of context information
could lead to an automated and intelligent selection of
input and output devices and methods. Future adaptive
multimodal context aware services have the potential
to provide new functionality, to be easier to use, and to
react flexibly as a multifunctional and personalized
mobile system.

8. References

[1] James Hendler, Tim Berners-Lee and Eric Miller:
Integrating Applications on the Semantic Web.
Journal of the Institute of Electrical Engineers of
Japan, Vol 122(10), October, 2002, p. 676-680.

[2] Stefan Fricke, Karsten Bsufka, Jan Keiser, Torge
Schmidt, Ralf Sesseler, Sahin Albayrak: Agent-
based Telematic Services and Telecom
Applications. Communications of the ACM, April
2001

[3] Ralf Sesseler, Sahin Albayrak: Service-ware
Framework for Developing 3G Mobile Services.
The Sixteenth International Symposium on
Computer and Information Sciences, ICSIS XVI,
2001

[4] Joos-Hendrik Böse, Sebastian Feuerstack:
Adaptive User Interfaces for Ubiquitous Access
To Agent-based Services. Workshop on Human-
Agent Interaction, Agentcities ID3, Barcelona,
Spain February 2003

[5] FIPA Agent Management Specification,
FIPA00023, 2002,
http://www.fipa.org/specs/fipa00023

[6] W3C Recommendation: Composite
Capability/Preference Profiles (CC/PP): Structure
and Vocabularies 1.0, 15 January 2004,
http://www.w3.org/TR/2004/REC-CCPP-struct-
vocab-20040115/ (28 June 2004)

[7] Jens Wohltorf, Richard Cissée, Andreas Rieger,
Heiko Scheunemann: BerlinTainment - An Agent-
Based Serviceware Framework for Context-Aware
Services. Proceedings of 1st International
Symposium on Wireless Communication Systems,
ISWCS 2004

[8] Jens Wohltof, Richard Cissée, Andreas Rieger,
Heiko Scheunemann: BerlinTainment - An Agent-
Based Serviceware Framework for Ubiquitous
Context-Aware Services, AAMAS 2004
demonstration, New York, USA

[9] Constantinos Phanouriou: Uiml: A device-
independent user interface markup language,
Ph.D. thesis, Virginia Polytechnic Institute ans
State University, September 2000.

[10] Jeffrey Nichols, Brad A. Myers, Michael Higgins,
Joseph Hughes, Thomas K. Harris, Roni
Rosenfeld, and Mathilde Pignol: Generating
remote control interfaces for complex appliances,
Proceedings of the 15th annual ACM symposium
on User interface software and technology, ACM
Press, 2002, pp. 161–170.

[11] Jeffrey Nichols, Brad A. Myers, and Kevin
Litwack, Improving automatic interface generation
with smart templates, Proceedings of the 9th
international conference on Intelligent user
interface, ACM Press, 2004, pp. 286–288.

