
V.G. Duffy (Ed.): Digital Human Modeling, HCII 2009, LNCS 5620, pp. 305–314, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Behavior-Sensitive User Interfaces for
Smart Environments

Veit Schwartze, Sebastian Feuerstack, and Sahin Albayrak

DAI-Labor, TU-Berlin
Ernst-Reuter-Platz 7, D-10587 Berlin

{Veit.Schwartze,Sebastian.Feuerstack,
Sahin.Albayrak}@DAI-Labor.de

Abstract. In smart environments interactive assistants can support the user’s
daily life by being ubiquitously available through any interaction device that is
connected to the network. Focusing on graphical interaction, user interfaces are
required to be flexible enough to be adapted to the actual context of the user. In
this paper we describe an approach, which enables flexible user interface layout
adaptations based on the current context of use (e.g. by changing the size of
elements to visually highlight the important elements used in a specific
situation). In a case study of the “4-star Cooking assistant” application we
prove the capability of our system to dynamically adapt a graphical user
interface to the current context of use.

Keywords: Layouting, model-based user interface development, adaptation,
constraint generation, context-of-use, smart environments, human-computer
interaction.

1 Introduction

Interactive applications, which are deployed to smart environments, are often targeted
to support the users in their every-day life by being ubiquitous available and
continuously offering support and information based on the users’ requirements. Such
applications must be able to adapt to different context-of-use scenarios to remain
usable for each user’s situation. Scenarios include e.g. adapting the user interface
seamlessly to various interaction devices or distributing the user interface to a set of
devices that the user feels comfortable with in a specific situation. The broad range of
possible user interface distributions and the diversity of available interaction devices
make a complete specification of each potential context-of-use scenario difficult
during the application design. Necessary adaptations require flexible and robust (re-)
layouting mechanisms of the user interface and need to consider the underlying tasks
and concepts of the application to generate a consistent layout presentation for all
states and distributions of the user interface. Based on previous work [12], we propose
a constraint-based GUI layout generation that considers the user’s behavior and her
location in a smart environment. Therefore we concentrate on the user’s context and
identify several types of possible layout adaptations:

306 V. Schwartze, S. Feuerstack, and S. Albayrak

1. Spot-based adaptation: In a smart environment, such as our SerCHo Living Lab,
different places identify various situations. Applications can consider these spots to
adapt their user interface layout to focus on those parts of the UI that are identified
as most important for a certain spot.

2. Distance-based adaptation: The distance of the user to a certain interaction device,
such as a wall-mounted display or a mobile phone, can be used to adapt the layout.

3. Orientation-based adaptation: The orientation of the user to an interaction device
can influence the presentation of the user interface. Thus, for instance the angle of
view in which the user looks at a display can be used to enlarge the visual weight
of elements on one side of the user interface presentation.

These adaptations can be done either by discretely or continuously modifying the

user interface layout and can be combined for a more comfortable interaction
experience. Different to the spot-based adaptation that requires the application
developer to explicitly specify, which user tasks are most relevant for a certain user
location, the distance- and orientation-based adaptations can be performed without
any effort of the designer. In the following, we illustrate the definition and usage of
layouting statements to create constraint systems that evaluate runtime context
information to adapt the user interface layout accordingly.

2 User Interface Layouting

Different to other layout generation approaches [11], we create the constraint system
at runtime. In our layout model a user interface is described using four basic
characteristics: the containment, the orientation, the order and the size of user
interface elements (UI elements). The containment characteristic describes the
relation of elements as a nested hierarchy by abstract containers that can contain other
abstract containers or UI elements. All UI elements are in an order that can be defined
by relations like “before” or “after”. The orientation distinguishes between elements
that are oriented horizontally or vertically to each other. Finally the size specifies the
width and height of containers and UI elements relative to other UI elements or
abstract containers. To create a constraint system from these characteristics, we use a
set of statements to express the building process. A statement has conditions
combined with conjunctions and disjunctions to define the scope of the statement.
Conditions can also use additional information about the UI elements to define
application independent statements. The formal description of a statement is shown in
figure 1 top. If the conditions are fulfilled, the statement is used and the effect
modifies the constraint system. At runtime this set of statements is evaluated and
creates a constraint system solved by a Cassowary constraint [1] solver. This
constraint solver supports linear problems and solves cycles. To generate a flexible
constraint system, it also supports a constraint hierarchy using weak, medium, strong
and required priorities. The Effect is split into dynamic and static, static statements
use only a static value for adaptations; in opposite dynamic statements use a function
depending on dynamic information. Dynamic functions are divided into logical- and
mathematical functions. Mathematical functions describe the behavior of their value

 Behavior-Sensitive User Interfaces for Smart Environments 307

Fig. 1. Statement format and example

in dependency to external information1 like the distance to the screen. Logical
functions use external information2 to create a logical value to come to a decision.
This kind of function for instance is used to generate the initial orientation for the
elements of the user interface.

The example shown in figure 1 describes a “Prioritize Statement” changing the
space allocation for a specific node, in this case for the element “GiveHelp”. The
effect contains a mathematic function with the variable “distance”. If the distance
between the user and the screen changes, the function recalculates the prioritized
value that describes how much space the element “GiveHelp” additionally gets from
other UI elements.

2.1 Statement Evaluation

The result of a successful layout calculation is a set of elements, each consisting of
the location (an absolute x, y coordinate) and a width and height value. The layout
generation is performed in three phases:

1. First an initial layout is automatically generated by a set of predefined algorithms

that interpret the design models like the task- and abstract user interface model to
generate an initial layout that is consistent for all platforms. The result of the
containment statement is a tree structure representing the graphical user interface
organization. The orientation statement at first allocates the vertical space and after
a designer modifiable threshold value is reached, it uses an alternating orientation.
After the definition of the orientation the size statement defines the initial space
usage for the user interface elements. Basic constraints assure that all additional
constraints added do not corrupt the constraint system.

1 Numerical data from different information sources like the context model.
2 Comparable data like numerical and textual information.

308 V. Schwartze, S. Feuerstack, and S. Albayrak

2. A designer can manipulate the pre-generated layout to match his aesthetical
requirements by adding statements that relate information of the design models
with a layout characteristic of a UI element.

3. Finally, the user behavior in a smart environment can by considered by adding
generic statements that can weight individual UI elements based on the actual
context of the user at system runtime.

2.2 Context Related-Layout Adaptations

To adapt the interface to specific situations the designer can define context sensitive
statements to prioritize specific nodes described in the next section. These statements
are only active for specific situations described by context information. Even though
our layout model describes the size, order, orientation and containment structure
separately, for realizing layout adaptations regarding the user behaviour, we focus on
size adaptations, as modifying the other layout characteristics can destroy the user
interface consistency, which affects the usability [7]. As we described in the
introduction, there are three different statement types: Spot-based adaptation,
Orientation-based adaptation, Distance-based adaptation. The basic idea for all
adaptations is to highlight the context relevant parts of the user interface for the
moment. This is described by a prioritize value characterizing how much additional
space an element can use compared to the rest of the interface. The figure below
shows an example. The algorithm allocates the space according to the weight
(contained elements) so the increase depends on the amount of other elements. In this
example we prioritize the red node, the prioritize value of ½ ensures that the node gets
additional space of the other nodes.

As a result, this statement adds a new constraint with the weight “strong” to the
constraint system sizerednode ≥ 2/3 * sizeparentnode. The context based adaptations use
static and dynamic statements to recalculate the space allocation for the graphical user
interface. The statements, defined by the designer, the prioritize value (static
statements) and prioritize function (dynamic statements), used in the next section, are
examples and adjustable by the designer. The Spot-based adaptation uses a static
prioritize statement for a specific set of nodes and an assigned position of the user. If
the user reaches the specified position, the statement is used and adds for the affected
nodes the amount of space given by the prioritize value.

Fig. 2. Result of the prioritizing process

 Behavior-Sensitive User Interfaces for Smart Environments 309

The orientation-based adaptation uses the Spots “D” and “A2” shown in figure 3
bottom. If the user enters the specified position, this statement is activated and
prioritizes a specific node. If the user stands left or right from the screen, this
statement prioritizes all nodes with the upper left corner on the opposite side.

The Distance-based adaptation uses the distance from the user to the screen to
calculate the prioritize value relative from the distance. If the user moves away from
the display, the relevant parts of the interface are enlarged. In the following case study
these adaptations are described and discussed.

3 Cooking Assistant Case Study

To test the adaptations we deployed the cooking assistant into a real kitchen
environment of our SerCHo living lab like depicted by the photo in figure 3 top-left.

This multimodal application assists the user during the cooking process. The main
screen, shown in figure 3, top-right, guides you through the cooking steps and
provides help if needed. The figure 3, bottom, illustrates several spots corresponding
to the different working positions and user tasks in the kitchen. Since the touch screen
supports a view angle of 160 degrees, the user cannot observe the screen from all
spots. For the spot-based layouting, we therefore focus on the spots listed in table 1.

Figure 4 depicts the box-based preview of our layout editor from which the main
screen of the cooking assistant has been derived. By a preceding task analysis, we
identified the most relevant interaction tasks. Deriving an initial layout model from a
task hierarchy structure has the advantage hat related tasks end up in the same boxes
and will be layouted close to each other since they share more parent containers the
closer they are related.

Fig. 3. The kitchen with the cooking assistant running on a touch screen (top-left), the main
screen of the cooking assistant (top-right), and the location spots defined by the context model
(bottom)

310 V. Schwartze, S. Feuerstack, and S. Albayrak

Table 1. An excerpt of the user contexts that are supported by the application. The second
column lists the most relevant application tasks for each user tasks.

Spot User context Relevant tasks ordered by
Priority.

A2
C1.2

Looking for ingredients. 1. listRequiredIngredients
2. listNextStepIngredients

B2 Preparing ingredients while following
the cooking advices and controlling
the kitchen appliances.

1. stepDetailedDescription
2. listRequiredIngredients
3. selectAppliance
4. giveHelp

D Learning about next steps while
cleaning dishes after a step has been
done.

1. presentNextStepSummary
2. listNextStepIngredients
3. stepSelection

E Concentrating on the video or getting
an overview about the recipe steps.

All tasks same priority

Fig. 4. Changes from automatic generated layout to designer adapted layout

The starting point for all adaptations is the constraint system generated by the
automatic statements shown in figure 4 Phase I and adapted by the designer to adjust
the space allocation to his wishes. The result of this process is shown in figure 4
Phase II. To adapt the constraint system to a specific situation, we describe three
examples below.

3.1 Statements for Spot-Based Adaptation: (B2)

While using the cooking assistant (CA), the user is preparing ingredients, following
the cooking advices and controlling the kitchen appliances. Because it is difficult to
look at the screen from this position, shown in figure 3 bottom, the statement
highlights the important information (Task: stepDetailedDescription, listRequired
Ingredients, selectAppliance, giveHelp). The condition of the Spot statement is
characterized by an environment condition, the position of the user and relevant
interactions tasks, as the interface structure is derived from the task model. Because

 Behavior-Sensitive User Interfaces for Smart Environments 311

Fig. 5. B2 prioritize “ShowCurrentStepDetail” with elements stepDetailedDescription, list
RequiredIngredients, selectAppliance and giveHelp

the container “showCurrentStepDetails” contains the most relevant elements it is
prioritized. Additionally, the statement use a static prioritize value, defined by the
designer. For this study we use a fraction of 4/5(80%) because the prioritization is
high enough to support the user, but low enough to follow the changes in the user
interface and not confuse the user. The effect of this statement for the case B2 is
shown in figure 5.

3.2 Statements for Distance-Based Adaptation

While cleaning dishes after a step has been done, the user wants to learn more about
the next step. A video helps to understand what has to be done. Because the focused
task is specified in the AUI model, the layout algorithm can prioritize the task
containing the specific element. The distance statement is characterized by a function
calculating the prioritize value depending on the distance to the screen. This function
is expressed by prioritize value = ax2 + bx +c. The constants a,b,c can adapted by the
designer to match the function to the maximum distance. For our case study we use
this linear function: prioritize value = 4/30003* distance. The user interface
prioritizing “giveHelp” depending to the distance is shown in figure 6.

Fig. 6. Distance based adaptation, shown for 100, 200 and 400cm

3.3 Statements for Orientation-Based Adaptation: (A2), (D)

If the user has something to do at the spots A2 and D shown in figure 3 bottom, the
view angle to the screen is inappropriate.

3 This fraction is calculated by the assumption that the interaction space maximum of 600cm,

the prioritization for this distance is 4/5(80%).

312 V. Schwartze, S. Feuerstack, and S. Albayrak

Fig. 7. Orientation based adaptation for left- and right side

Depending from the angle of view to the screen shown in figure 7, elements with
the upper left corner at the affected side rendered broader than half width of the
screen. If the user enters Spot D (left) and leaves the normal angle of view (shown in
figure 3 bottom) the width of the elements “giveHelp” and “controlAppliance” is
growing to half of the screen width. The same happens if the user enters Spot A2
(right) with the elements “listRequiredIngredients”, “listNextStepIngredients”.

4 Related Work

Nichols et al. list a set of requirements that need to be addressed in order to generate
high-quality user interfaces in PUC [5]. As for layout information they propose to not
include specific layout information into the models as this first tempts the designers to
include too many details into the specification for each considered platform, second
delimits the user interface consistency and third might lower the chance of
compatibility to future platforms. Different to PUC we are not focusing on control
user interfaces, but end up in a domain independent layout model that specifies the
containment, the size, the orientation and the order relationships of all individual user
interface elements. Therefore we do not want to specify the layout manually for each
targeted platform and do not rely on a set of standard elements (like a set of widgets
for instance) that has been predefined for each platform.

The SUPPLE system [3] treats interface adaptation as an optimization problem.
Therefore SUPPLE focuses on minimizing the user’s effort when controlling the
interface by relying on user traces to estimate the effort and to position widgets on the
interface. Although in SUPPLE an efficient algorithm to adapt the user interface is
presented, it remains questionable if reliable user traces can be generated or
estimated. While SUPPLE also uses constraints to describe device and interactor
capabilities they present no details about the expressiveness of the constraints and the
designers effort in specifying these constraints.

The layout of user interfaces can be described as a linear problem, which can be
solved using a constraint solver. The basic idea is shown in [12], this approach uses a
grid layout to organize the interface and create a constraint system. Our approach
instead uses a tree structure and supports more constraint strengths. Recent research
has been done also by Vermeulen [8] implementing the Cassowary algorithm [1], a
weak constraint satisfaction algorithm to support user interface adaptation at run-time
to different devices. While he demonstrates that constraint satisfaction can be done at
run-time, to our knowledge he did not focus on automatic constraint generation.

 Behavior-Sensitive User Interfaces for Smart Environments 313

Other approaches describe the user interface layout as a space usage optimization
problem [4], and use geometric constraint solvers, which try to minimize the unused
space. Compared to linear constraint solving, geometric constraint solvers require
plenty of iterations to solve such a space optimization problem. Beneath performance
issues an efficient area usage optimization requires a flexible orientation of the user
interface elements, which critically affects the user interface consistency.

Richter [6] has proposed several criteria that need to be maintained when re-
layouting a user interface. Machine learning mechanisms can be used to further
optimize the layout by eliciting the user’s preferences [5]. The Interface Designer and
Evaluator (AIDE) [7] and Gadget [2] are incorporating metrics in the user interface
design process to evaluate a user interface design.

Both projects focus on criticizing already existing user interface layouts by
advising and interactively supporting the designer during the layout optimization
process. They follow a descriptive approach by re-evaluating already existing systems
with the help of metrics. This is different to our approach that can be directly
embedded into a model-based design process (forward engineering).

To adapt user interfaces to a specific situation, in [9] an XSL transformation is
used to adapt the abstract description of the interface to the different devices. Our
approach follows a model-based user interface design [8]. Following a model-based
user interface development involves a developer specifying several models using a
model editor. Each abstract model is reified to a more concrete model until the final
user interface has been derived. The result is a fine structured user interface, which
could be easily adapted to different situations.

An akin approach to create a user interface is presented in [10], the interface
structure is derived from the task model and fleshed out by the AUI- and CUI Model.
To adapt the interface to mobile devices, different containing pattern are used to
organize the information on the screen. Our approach doesn’t break the interface
structure into small pieces because all information has to be displayed.

5 Conclusion and Further Work

In this paper we presented an approach to adapt the user interface of applications to
specific situations. Furthermore our case study “4-Star Cooking Assistant” has shown
the relevance to support the user. In the future we have to enlarge the case study to
other applications and check more context information about the relevance for GUI
adaptations.

User-interaction-related adaptation: Based on the user’s experiences and his
interaction history (tasks completion and referred objects), the most important areas
of control can be visually weighted higher to prevent unprofitable interaction cycles
or helping the user in cases where he is thinking (too) long about how to interact or to
go any further.

User-abilities-related adaptation: The layout adapts to the user’s stress factor by
visually highlighting the most relevant tasks, and takes into account if the user is left
or right handed by arranging the most relevant parts of the user interface. Finally his
eye-sight capabilities can be used to highlight the most important areas of control.

314 V. Schwartze, S. Feuerstack, and S. Albayrak

References

1. Badros, G.J., Borning, A.: The Cassowary linear arithmetic constraint solving algorithm.
In: ACM Transactions on Computer-Human Interaction (2001)

2. Fogarty, J., Hudson, S.: GADGET: A toolkit for optimization-based approaches to
interface and display generation (2003)

3. Gajos, K., Weld, D.: SUPPLE: Automatically Generating User interfaces; In: Proceedings
of Conference on Intelligent User Interfaces 2004, Maderia, Funchal, Portugal (2004)

4. Gajos, K., Weld, D.S.: Preference elicitation for interface optimization. In: UIST 2005:
Proceedings of the 18th annual ACM symposium on User interface software and
technology, New York, NY, USA (2005)

5. Nichols, J., Myers, B.A., Harris, T.K., Rosenfeld, R., Shriver, S., Higgins, M., Hughes, J.:
Requirements for Automatically Generating Multi-Modal Interfaces for Complex
Appliances. In: IEEE Fourth International Conference on Multimodal Interfaces,
Pittsburgh

6. Richter, K.: Transformational Consistency. In: CADUI 2006 Computer-AIDED Design of
User Interface V (2006)

7. Sears, A.: Aide: a step toward metric-based interface development tools, pp. 101–110
(1995)

8. Vermeulen, J.: Widget set independent layout management for uiml, Master’s thesis,
School voor Informatie Technologie Transnationale Universiteit Limburg (2000)

9. Chiu, D.K.W., Hong, D., Cheung, S.C., Kafeza, E.: Adapting Ubiquitous Enterprise
Services with Context and Views. In: Dickson, K.W. (ed.) EDOC 2006: Proceedings of the
10th IEEE International Enterprise Distributed Object Computing Conference,
Washington, DC, USA, pp. 391–394 (2006)

10. Martinez-Ruiz, F.J., Vanderdonckt, J., Martinez-Ruiz, J.: Context-Aware Generation of
User Interface Containers for Mobile Devices. In: ENC 2008: Proceedings of the 2008
Mexican International Conference on Computer Science, 2008, Washington, DC, USA,
pp. 63–72 (2008)

11. Lutteroth, C., Strandh, R., Weber, G.: Domain Specific High-Level Constraints for User
Interface Layout, Hingham, USA, pp. 307–342 (2008)

12. Feuerstack, S., Blumendorf, M., Schwartze, V., Albayrak, S.: Model-based layout
generation. In: Proceedings of the working conference on Advanced visual interfaces,
Napoli, Italy (2008)

	Behavior-Sensitive User Interfaces for Smart Environments
	Introduction
	User Interface Layouting
	Statement Evaluation
	Context Related-Layout Adaptations

	Cooking Assistant Case Study
	Statements for Spot-Based Adaptation: (B2)
	Statements for Distance-Based Adaptation
	Statements for Orientation-Based Adaptation: (A2), (D)

	Related Work
	Conclusion and Further Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

