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Abstract 
Functional cognitive models are used to explain observed 
human behavior. Applying such models to predict behavior 
requires generalization of the model to be applied in different 
application domains but also a careful consideration of model 
input data validity. Visual attention models have already been 
validated in various domains. But elicitation techniques to 
collect valid input data that is reproducible by others are still 
missing. For visual attention prediction model input data is 
determined mainly based on discussion between experts and 
individual experience, which is difficult to reproduce. We use 
a software tool to support input validity. The tool helps users 
to create attention models. It uses images of the situations that 
are investigated for stimulating the users to virtually put 
themselves into these situations. An experiment (n=40) 
showed that using looping videos instead of static images 
stimulates imagination in a different way. It has an effect on 
the models generated by the users and needs careful consider-
ation. 

Keywords: Visual Attention; Human Factors; Supervisory 
Control; Software-supported method; Cognitive Modeling; 
Safety. 

Introduction 
Applying cognitive models for predicting human behavior 
often requires on the one hand expertise in cognitive model-
ing and on the other hand profound knowledge of the do-
main for that they are applied. To tackle the former, model-
ing tools, such as for instance CogTool have been proposed 
that are based on “zero-parameter models” (i.e. GOMs, 
KLM and ACT-Simple) (John et al. 2004) that enable hu-
man performance prediction based on automatically gener-
ated cognitive models. Such approaches can be applied by 
e.g. a designer to predict human performance for human-
machine interface (HMI) design variants. 

Most of the cognitive models cannot be generalized and 
reduced to a predefined fixed set of operators as they de-
pend on experts’ inputs to determine valid input parameters. 
Visual attention prediction models depend for instance on 
parameters that are knowledge driven and therefore require 
application domain knowledge for determining the parame-
ter values. The current process for parameter estimation is to 
ask domain experts and letting them argue and discuss about 
the parameter values. And in fact studies in various applica-
tion domains report high correlations to measured data fol-
lowing such approaches (Wickens et al. 2008, Koh et al. 

2011). But a discussion-based parameter-determination is 
hardly reproducible as the quality depends on individual 
expertise and on the composition of the expert group (to 
ensure e.g. that silent voices are also heard).  

We use a software tool, the Human Efficiency Evaluator 
(HEE) to capture the relevant knowledge for visual attention 
prediction in the specific application domain. The tool im-
plements a structured, repeatable process and is used by the 
experts individually to capture and aggregate their 
knowledge. To stimulate the knowledge capturing the tool 
depends on either images or videos that show exemplary 
situations for that the model parameters are then estimated 
by the experts.  

In this contribution we explore the experts’ capabilities to 
abstract from the very specific concrete shown situations 
and focus on identifying the differences between a video-
based and an image-based stimulus for attention modeling. 

Model-based Visual Attention Prediction 
Model-based visual attention prediction can complement 
eye-tracking studies, as it does not depend on HMI func-
tional prototypes and simulations but on human experiences 
and imagination that is captured by discussion and feed as 
parameters in prediction models. The SEEV model of atten-
tion allocation (Wickens et al. 2001) is such a promising 
model of visual attention. It describes that “the allocation of 
attention in dynamic environments is driven by bottom up 
attention capture of salient events, which are inhibited by 
the effort required to move attention, and also driven by the 
expectancy of seeing valuable events” (McCarley et al. 
2002). The SEEV model is used to predict the percentage of 
time, that someone spends looking at an area of interest 
(AOI). It is typically applied by HF experts that have a deep 
understanding of human attentional processes. The SEEV 
model relates the probability ௦ܲ of attending a specific AOI 
 :to four factors ݏ

௦ܲ = Saliency – Effort + Expectancy ∙ Task Value 

The first two coefficients, Saliency and Effort are bottom-up 
factors that describe the saliency of information displayed 
by an AOI and the effort it takes to obtain the information, 
e.g., by moving eyes and head or navigating through a 
menu. Expectancy and Task Value are top-down factors. 
They describe how often new information can be expected 



from an AOI and how valuable the information is for ac-
complishing the tasks of the human operator.   

While the bottom up parameters can be estimated e.g. 
based on physiological data about the effort for eye and 
head movements (Gore et al. 2009) or by computing salien-
cy maps (Itti & Koch 2001), the determination of the 
knowledge-based expectancy and value coefficients often 
depend on data gained by domain experts for a specific 
application use case.  

SEEV model variants, considering some or all of the four 
factors, have been used to model and predict attention allo-
cations for a wide variety of tasks in various domains: For 
instance in aeronautics, to predict monitoring while taxiing 
on ground (Wickens et al. 2008), or the influence of specific 
cockpit instruments (Goodman et al. 2003) on monitoring 
behavior. In the automotive domain the model was applied 
to evaluate drivers’ monitoring behavior while approaching 
intersections (Bos et al. 2015) and also to evaluate the influ-
ence of secondary tasks (Wortelen et al. 2013). Recent stud-
ies also demonstrate modeling efforts ending with valid 
predictions for nurses’ experience level when assisting in an 
operation theater in a hospital (Koh et al. 2011). All SEEV 
model related studies we are aware of, report moderate up to 
very high correlations (0.6< R <0.97) between eye tracking 
studies and the model predictions.  

Improving Input Quality  
The broad majority of the studies above applied the “least 
integer ordinal value” heuristic, which estimates parameter 
values by letting experts systematically compare AOIs be-
tween conditions. A recent approach applies the analytic 
hierarchy process technique for quantifying the informa-
tional importance (Ha & Seong 2014).  

The results of those methods, the relevant concrete pa-
rameter values are stated in most of the studies above and 
predictions therefore can be reproduced, but only one study 
we found (Koh et al. 2011) reported insights about the 
amount of experts, their background and prior knowledge, 
and the method applied to agree on the model input parame-
ter values. If the attention model is created for instance by 
only one HF expert, errors made by this HF expert can have 
a huge impact on the predictions. If the parameter estima-
tion is a result of a discussion of several experts, quiet voic-
es can be missed easily. Finally, if instead several experts 
are individually applying a method, the often observed eval-
uator effect might become evident (Hertzum & Jacobsen 
2001).  

We use a software tool, the Human Efficiency Evaluator 
(HEE), for input data gathering. We believe that using a 
well-structured and tool supported process for input data 
gathering improves documentation and reproducibility of 
the input data gathering. Prior studies have shown that the 
tool can be applied in parallel sessions and with very little 
training by domain experts for visual attention modeling 
(Feuerstack & Wortelen 2016). Based on a preset set of 
operator tasks to consider and images of HMI design vari-
ants embedded in their environment, the tool guides the 

domain experts through four major steps: (1) the identifica-
tion of areas of interest (AOI) relevant for the operator tasks 
(see Figure 1 for a screenshot), (2) the determination of 
expectancy, which is performed by ordering the AOIs ac-
cording to the expected frequency of information events, (3) 
ordering the importance of the operator tasks, and finally, 
(4) the specification of relevance of each AOI for the opera-
tor tasks. The least integer ordinal value heuristic is used to 
calculate numeric parameters from the orders defined in step 
(3) and (4). In (Feuerstack & Wortelen 2017) we observed a 
high variance in the data we collected from the domain 
experts, and interestingly also from the HF experts that we 
evaluated in a separate session. While variance between 
experts was also observed in earlier studies e.g. in usability 
evaluation (Hertzum & Jacobsen 2001) it has not been con-
sidered to be relevant for model-based attention prediction 
to the best of our knowledge. The observed variance seems 
to be capturing well the diversity that people show in gen-
eral when asked to give estimates. First studies indicate 
(Feuerstack & Wortelen 2016, Feuerstack & Wortelen 
2017) that the diversity prediction theorem (also called 
Wisdom of the Crowd (Surowiecki 2004)) can be applied 
also for attention prediction modeling with the HEE: By 
averaging individual model predictions, individual predic-
tion errors can be eliminated and high correlations with 
measured eye-tracking data have been observed (Feuerstack 
& Wortelen 2017). 

To gather expert data the tool requires images represent-
ing a situation (e.g. a critical traffic situation) for that the 
operators’ (i.e. drivers’) visual attention distribution is then 
modeled. The approach depends on such images to stimulate 
the capability of the experts to mentally put themselves into 
this concrete situation (e.g. one specific left lane change 
situation) and to anticipate all possible situations that could 
occur (while performing a lane change). While looking at 
data from a previous study (Feuerstack & Wortelen 2017), 
we suspected that the models created by the subjects might 
be affected by the images that were selected to be repre-
sentative for a specific situation. Therefore, we investigate 
how the selection of images representing situations for visu-
al attention modeling impacts the identification of AOIs (i.e. 
where one looks at) by the subjects and how using videos 
instead of images might reduce potential biases. For an 
experiment we formulate the following hypotheses:  

 
H1: “Experts mark bigger AOIs for information that is mov-
ing relative to the position of the human operator if videos 
are used to present a driving situation in several variations 
compared to using static images.” 
 
The location of information that is not fixed relative to the 
operator is moving in a video, while it has a fixed position 
in an image. Therefore it is hypothesized that participants 
only mark boundaries of information at a single position 
when using images instead of marking larger areas when 
using videos. 

 



H2: “The choice between video and image does not affect 
the expectancy and value parameters of the SEEV model.”  
 
Although we assume that using videos to represent situa-
tions has an effect on the sizes of AOIs compared to using 
static images, we see no reason, why it should affect the 
modelling process for expectancy and value parameters of 
the SEEV model. 
 
H3: “More AOIs are marked using looping videos of a situa-
tion compared to static images.” 
 
In previous studies (Feuerstack & Wortelen 2016, Feu-
erstack & Wortelen 2017) we found high individual differ-
ences in how many and what kind of AOIs were marked. 
We assume that the static image is a reason for this vari-
ance. Some AOIs might not be marked by every subject, 
because the dynamics of the situation are not visible in the 
static image. Thus, they might fail to identify all areas were 
information shows up. In contrast, the video shows the dy-
namics of the situation. Thus we assume that more AOIs are 
marked using videos. 

Experiment 
We conducted an experiment and asked subjects to model 
the distribution of attention for different phases of an over-
taking maneuver using the Human Efficiency Evaluator 
(HEE). We tested two conditions in a between subject de-
sign with two groups of subjects. For some subjects the 
driving situations were represented using videos (V condi-
tion) and for some using static images (I condition). 

Participants 
40 licensed car-drivers were recruited by public announce-
ments in the university and were required to be licensed for 
at least 3 years (mean: 8.05 median: 7.0), have a minimum 
driving experience of 3000 km per year (mean: 11450 medi-
an: 8000) and received an expense allowance of 10 EUR/h.  
23 women and 17 men participated in the study, aged be-
tween 20 - 40 years (avg: 25.175 median: 24). 

Procedure 
The experiment was carried out in groups of 4 to 8 subjects 
for each session and was done in a computer lab in that 
every subject had a separate PC workplace with two 
screens. In total we had 20 randomly assigned subjects for 
each group and participants of both groups were mixed 
within the sessions.  

A video-tutorial, a scripted subject introduction and a 
written exercise sheet have been used to reduce potential 
bias by the instructors. Subjects were allowed to ask ques-
tions, which were transcribed in the observation records. 
The subjects had to start with watching the tutorial video 
first, which introduced them to the tool and its implemented 
attention modelling process by a supervision example of a 
football game. The tutorial video was identical for both 
groups, with the only exception that for one group the foot-

ball situations were displayed as static images and for the 
other group looping videos of several variances of the same 
football situation (a corner kick) were used. After the tutori-
al were introduced to an overtaking scenario consisting of 
three phases: (1) merging into left lane, (2) overtaking, and 
(3) merging into right lane. All subjects were asked to iden-
tify all areas of interest for each phase that they assume are 
relevant for three given tasks as a car driver: (1) Respect 
speed limit, (2) Overtake slower vehicles, and (3) Control 
lateral position. Figure 1 depicts the main screen of the HEE 
that the subjects used to identify the areas of interest. In the 
video condition the videos started automatically after start-
ing the tool but could be paused by the participants. 

After the experiment the two authors and a co-worker in-
dependently identified classes of AOIs based on the 1155 
AOIs marked by all subjects. In a group discussion we 
agreed on 37 classes of AOIs. Subjects used for their models 
different levels of abstraction. For example, some marked 
the entire dashboard as an AOI, while others differentiated 
between speedometer, revolution counter and the blinking 
arrow of the direction indicator. We reflected this by organ-
izing the AOI classes in a hierarchy shown in Figure 2. 
Afterwards each of the three persons independently classi-
fied all 1155 AOIs with a substantial level of agreement 
(Fleiss’ κ = 0.83). 

Results and Discussion 

Hypothesis H1 
To test hypothesis H1 we differentiate between AOIs that 
have a fixed position relative to the head of the driver (AOI 
classes with white boxes in Figure 2), and those that move 
relative to the head of the driver (AOI classes with gray 
boxes in Figure 2). As expressed in H1, we only expected an 
effect for moving information sources.  

For each AOI class we took all AOIs belonging to the 
class, including subclasses and calculated the mean size of 
the information sources in square pixels. 

We did this separately for each condition V and I. The re-
sults are plotted in Figure 3. The red line is a straight line 

 
Figure 1: Areas of Interest (AOIs) identification with the 

HEE. 



through the origin with slope 1. For each AOI class the 
mean AOI size in the V condition is plotted against the 
mean AOI size in the I condition. According to the H2, 
AOIs with a fixed position  should have similar sizes in both 
conditions and thus should be located close to the red line 
(green data points in Figure 3), while moving AOIs should 
be plotted above the line (blue data points). The sample 
sizes for all the AOI classes differ, because some AOI clas-
ses were marked very often by participants, while others are 
rarely marked. The size of data points in Figure 3 is propor-
tional to the minimum of the sample size of the V and I 
conditions (nMin). The Figure seems to support our hypothe-
sis. The two green outliers at (20K, 60K) have a sample size 
of 1. 

For all moving AOI classes with nMin > 10, we did Welch 
two sample t tests with unbalanced sample sizes, to test if 
the differences are significant. Table 1 shows the p values 
after Holm-Bonferroni correction for 8 AOI classes with 
nMin > 10. In 4 of the six classes results are significant.  

 
 

 

 

 

 

 

 

 

 

Table 1: Results of the t-tests for differences in AOI sizes 
between I and V condition for AOI classes with more than 

10 AOIs in each condition. 

AOI class p 
Frontal view 0.001 
Traffic ahead 0.085 
Left lane close traffic 0.116 
Right lane close traffic 0.003 
Right lane traffic a bit ahead 0.011 
Traffic signs area right 0.001 

Figure 4 illustrates the effect using the AOI class “Traffic 
signs area right” as an example. The top row shows the 
AOIs marked by subjects of the image group. It mostly 
shows small areas that just cover the traffic sign in the im-
age, while the areas in the bottom row are from the video 
condition, were subjects marked the entire region where the 
traffic sign could be visible. It can also be seen, that partici-
pants only mark the information, if it is visible. In the sec-
ond phase (overtaking) no traffic sign was visible in the 
image. In this phase only one subject created an AOI in the 
area were traffic signs are typically perceived. 

Hypothesis H2 
For testing H2, that there is only an effect on the sizes of 
AOIs but not on the parameters of the SEEV model, we 
conducted equivalence tests for these parameters. We used 
the two one-sided test (TOST) procedure (Schuirmann 
1987) to test for equivalence of the parameters between the 
image and video conditions. For the procedure a margin δ 
for the difference of the means of the parameters between V 
and I conditions needs to be defined (-ߜ < തതതതܯ − ூതതതതܯ <  ,(ߜ 
for which we consider the parameters as equal. [-δ, δ] is the 
equivalence interval. 

Parameters were operationalized using the lowest ordinal 
heuristic (Wickens et al. 2001). Therefore, the minimum 
difference between parameters from one modeler is 1. We 
chose to express the margin δ for the mean of a SEEV pa-
rameter for a specific AOI class as a fraction of this minimal 
individual difference and consider the parameter distribu-

Figure 2: Hierarchy of AOI classes, showing different 
levels of abstraction. 

 
Figure 3. Comparison of average AOI sizes between V and 
I conditions for each AOI class. AOI classes with moving 
information are represented with blue data points, fixed 

AOIs with green data points. Size of data points 
proportional to sample size. Red line is line through the 
origin with gradient 1. Blue data points above the line 

indicate that moving information is marked bigger in the 
video condition. 



tions equivalent, if the means do not differ more than half of 
the minimal individual difference (0.5 = ߜ). The TOST 
shows equivalence for a chosen α-level, if the (1-2α)-
confidence interval is within the equivalence interval. For 
each AOI class we tested it separately for all three situa-
tions, because parameters differ between situations. Howev-
er, in several cases this resulted in very few data points for 
an AOI. We excluded AOIs with less than 6 data points.  

In Figure 5 all remaining AOIs are listed on the x-axis or-
dered by the size of the confidence interval. It shows the 
confidence intervals as red bars and the equivalence interval 
as blue area. It is easy to see, that we were not able to show 
parameter equivalence for even a single AOI. For most 
AOIs the difference of the means is well within the equiva-
lence interval, but the boundaries of the confidence intervals 
are not. Because we did this test separately for each AOI 
and each driving situation, the limited number of data points 
resulted in large confidence intervals and prevents drawing 
a clear conclusion. 

Hypothesis H3: 
For each participant the identified AOIs for each driving 
phase were counted resulting in 60=20 × 3 counts. An inde-
pendent-samples t-test was conducted to compare the counts 
between video and image condition. There was not a signif-
icant difference in the numbers of identified information 
sources for video (M=6.53, SD=2.13) and image (M=6.23, 
SD=2.70) conditions (t118=0.68, p=0.50). Subsequent t-tests 
for each situation alone also found no significant effect. 

This result was unexpected. We examined the data in 
more detail. As we expected, information that is not visible 
in the image, but is sometimes visible in the video (e.g., 
indicator lights or road signs) is marked more often in the 
video compared to the image condition. The opposite case 
did not occur (information visible in the video, but not in the 
image). However, we identified another group of AOIs that 
are visible in the image but only sometimes in the video. 
This group produces the opposite effect. These AOIs were 

 
Figure 4: Subjects identification of traffic signs based on static images (top row) and on looping videos (bottom row) 

 
Figure 5. Visualization  of the TOST results. Red bars are 
the 90% confidence intervals. Blue area is the equivalence 

interval. 
 



marked more often in the image compared to the video 
condition. A t-test showed, that the difference in the effect 
was significant (p=0.03) between both groups of AOIs 1: 
visible in image, but only sometimes in the video, and 2: not 
visible in image, but at least sometimes visible in video.  

Although, this is just a post-hoc hypothesis, it indicates, 
that the choice between using videos or images and select-
ing what exactly is displayed has an effect on the models 
generated by the users. It therefore needs careful considera-
tion. 

Conclusion 
Exemplary situations to stimulate monitoring behavior 
modeling need to be carefully chosen. One has to distin-
guish between areas of information with fixed visual bor-
ders (e.g. side mirrors), areas without fixed visual borders 
but fixed location (e.g. road ahead) from the monitoring 
person’s perspective, and those with moving location (e.g. 
traffic signs). Specifically the AOI identification of AOIs 
with moving locations benefits from using videos instead of 
images.  
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