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Abstract: With more and more systems and machines operating autonomously, the role of the operator is 

changing from “being actively in control” to “monitor and intervene”. Human Machine Interfaces (HMI) 

therefore need to be optimized so that they can efficiently be monitored by a human. We propose the 

Human Efficiency Evaluator (HEE), a software tool for (1) evaluating the impact of HMI design changes 

on the visual monitoring behavior of the operator and (2) to explore differences in understandings 

between a group of collaborating HMI designers or between HMI designers and their targeted audience: 

the operators. We describe the tool and highlight the model exploration capabilities of the HEE by 

reporting about two use cases: one in the maritime domain, in which the tool supported an HMI designer 

to get insights into human operators’ monitoring behavior, and one in the automotive domain, in which 

the tool was used to reveal differences in understanding between six Human Factor Experts about the 

impact of three HMI design variants of an Urban ACC. 
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1. INTRODUCTION 

The way we interact with machines is changing: Machines 

are getting continuously smarter and more and more are able 

to run autonomously without any human control. While still a 

human remains responsible for what the machine is doing, 

the human’s role changes from “being in control” to “monitor 

and intervene”. Human machine interfaces (HMI) therefore 

need to be optimized to support efficient human monitoring. 

Methods for analyzing HMIs for monitoring based on 

cognitive methods have already been used in safety-critical 

system design, e.g. for airplane cockpits [Wickens et al. 

(2003)], air traffic control [Wickens et al. (2008)] or in a 

clinical  operation  theater in a hospital [Koh et al. (2011)] by 

experts in human factors (HF) and cognitive engineering. 

Although these methods have been proven to be helpful, they 

have only been applied to a small extend so far. Reasons are 

the complexity of cognitive modelling, and a relatively high 

cost-benefit ratio. 

We propose the Human Efficiency Evaluator (HEE), which is 

a software tool that eases the data collection, prediction, and 

exploration of monitoring behaviour. It enables human factor 

(HF) experts as well as HMI designers or domain experts 

with no or little background in cognitive modelling to model, 

predict and simulate human monitoring behaviour. Earlier 

versions of this tool were also used to predict cognitive and 

motor workload [Feuerstack et al. (2015)]. The tool can also 

combine and aggregate multiple monitoring models that were 

specified by an arbitrary large number of HF experts or 

designers. Prior work had indicated that although individual 

models differ, the model quality improves by averaging these 

models [Feuerstack & Wortelen (2016)]. The observed 

modelling variance in earlier studies gave us the idea that the 

tool can also be used to discover these differences in 

understanding of the working domain and the proposed HMI 

design within a group of peopled involved in the HMI design 

or between the HMI designers and the targeted audience (i.e. 

the operators with domain expertise). In this contribution we 

present the model exploration capabilities of the Human 

Efficiency Evaluator and report about two use cases, in which 

the tool has been applied: one in the automotive domain and 

one in the maritime domain. 

2. VISUAL ATTENTION MODELING 

The vision of human modeling is to provide methods, 

techniques and tools to generate predictions of human 

performance. The SEEV model of attention allocation 

[Wickens et al. (2001)] provides such a promising theory for 

modeling visual attention. It describes that “the allocation of 

attention in dynamic environments is driven by bottom up 

attention capture of salient events, which are inhibited by the 

effort required to move attention, and also driven by the 

expectancy of seeing valuable events” [McCarley et al. 

(2002)]. The SEEV model is used to predict the percentage of 

time, that someone spends looking at an area of interest 

(AOI). It is typically applied by HF experts that have a deep 

understanding of human attentional processes. The SEEV 

model relates the probability 𝑃𝑠 of attending a specific AOI 𝑠 

to four factors: 

𝑃𝑠 = Saliency – Effort + Expectancy ∙ Task Value 



 

 

     

 

The first two coefficients, Saliency and Effort are bottom-up 

factors that describe the saliency of information displayed by 

an AOI and the effort it takes to obtain the information, e.g., 

by moving eyes and head or navigating through a menu. 

Expectancy and Task Value are top-down factors. They 

describe how often new information can be expected from an 

AOI and how valuable the information is for accomplishing 

the tasks of the human operator.   

SEEV model variants, considering some or all of the four 

factors, have been used to model and predict attention 

allocations for a wide variety of tasks in various domains: For 

instance in aeronautics, to predict optimal scanning paths for 

landing operations [Wickens et al. (2003)], monitoring while 

taxing on ground [Wickens et al. (2008)], or the influence of 

specific cockpit instruments [Goodman et al. (2003)] on 

monitoring behavior. In the automotive domain the model 

was applied to evaluate drivers’ monitoring behavior while 

approaching intersections [Bos et al. (2015)] and also to 

evaluate the influence of secondary tasks [Wortelen et al. 

(2013), Horrey et al. (2006)]. Recent studies also demonstrate 

modeling efforts ending with valid predictions for nurses’ 

experience level when assisting in an operation theater in a 

hospital [Koh et al. (2011)].  

Research on model-based attention prediction is being 

performed since several decades. But to the best of our 

knowledge, the SEEV model parameter estimation is mostly 

based on pen-and-paper techniques (like e.g. by sheets and 

matrixes) summarizing discussions between domain and HF 

experts. Some use simulation environments e.g. to estimate 

the bottom up parameters of the SEEV model such as 

MIDAS [Corker & Smith (1993)] for instance, which is 

developed by the NASA since 1985 to support 3-D rapid 

prototyping of human-machine systems, to evaluate 

procedures, controls and displays before they are actually 

being built in hardware. It was also integrated into the 

CASCaS framework, which is used to simulate safety-critical 

tasks [Wortelen (2014)]. 

Some tools have been proposed to support cognitive model 

creation. CogTool [Harris et al. (2010)] for instance supports 

the generation of ACT-R [Anderson et al. (2004)] models 

with deterministic sequences of actions. These models are 

based on GOMS and KLM and are targeted on predicting 

task performance of Windows-, Icons, Menus, and Pointer 

(WIMP)-based user interfaces. The Distract-R system by 

Salvucci [Salvucci (2009)] is also based on ACT-R. It allows 

to create ACT-R models of in-vehicle, secondary task 

interactions in a way similar to CogTool. It integrates these 

models with a detailed driver model to simulate and predict 

effects of secondary task distraction on driving behavior. 

COGENT [Cooper & Fox (1998)] is a graphical modeling 

editor for psychologists that allows “programming” cognitive 

models at a higher level of abstraction. It is based on box and 

arrow diagrams that link to a set of standard types of 

cognitive modules, which implement theoretical constructs 

from psychological theory. COGENT, CogTool, Distract-R 

and HEE share the idea of making cognitive modeling easier 

by allowing programming on a higher level of abstraction. 

Whereas COGENT focuses on psychologists and extensive 

training, the HEE, CogTool and (to a lesser extent) Distract-R 

do not require any specific expertise to generate cognitive 

models and can therefore be used by non-experts in cognitive 

modeling as well.  

To the best of our knowledge, the application of these models 

is still performed in a niche, mainly in the safety-critical 

systems domain. Prior works that we are aware of mainly 

focus on the validity of attention prediction. We show in the 

following that the model input validity is the main challenge 

that prevents broader application. Even though, validity is 

desirable, model exploration offers an additional major 

benefit independently of validity. Therefore, this work 

demonstrates the potential of model exploration for HMI 

design. 

2.1 Model Parameter Input Validity  

All SEEV model related studies we referenced above report 

moderate up to very high correlations (0.6< R <0.97) 

between eye tracking studies and the model predictions based 

on the SEEV model. But input validity remains a problem: 

the expert knowledge that is required to determine the actual 

SEEV model parameters to generate valid predictions is not 

captured. While the bottom up parameters values can be 

estimated e.g. based on physiological data about the effort for 

eye and head movements [Gore et al. (2009)] or by 

computing saliency maps [Itti & Koch (2001)], the 

determination of the knowledge-based expectancy and value 

coefficients often depend on data gained by domain experts 

for a specific application use case. 

Most studies therefore rely on methods and techniques to 

estimate the value and expectancy coefficients based on 

expert judgment. The broad majority of the studies above 

applied the “least integer ordinal value” heuristic, which 

estimates parameter values by letting experts systematically 

compare AOIs between conditions. A recent approach applies 

the analytic hierarchy process technique for quantifying the 

informational importance [Ha & Seong (2014)].  

The results of those methods, the relevant concrete parameter 

values are stated in most of the studies above and predictions 

therefore can be reproduced, but only one study we found 

[Koh et al. (2011)] reported insights about the amount of 

experts, their background and prior knowledge, and the 

method applied to agree on the concrete model input 

parameter values. If the attention model is created for 

instance by only one HF expert, errors made by this HF 

expert can have a huge impact on the predictions. If the 

parameter estimation is a result of a discussion of several 

experts, quiet voices can be overheard easily. Finally, if 

instead several experts are individually applying a method, 

the often observed evaluator effect might become evident. 

This means that individual rating variability is high 

[Feuerstack & Wortelen (2016)]. 

2.2 Model-based Exploration 

The focus of research of most of the contributions on 

attention modeling that we are aware of, is on identifying and 

assessing the relevant factors and their corresponding 

interactions to explain an observed human behavior. A 



 

 

     

 

benefit that one intuitively might expect from the model-

based method is that it is a low cost replacement for early 

eye-tracking studies. Therefore the way that the predictions 

of a model-based method are utilized often corresponds with 

how eye-tracking data is utilized. Both methods can be 

applied as a tool to measure how a human divides attention 

between several areas of interest (e.g. between products in a 

shopping mall). This helps understanding what is relevant for 

a certain task (e.g. eye tracking studies with users performing 

tasks on a website). However, we argue that model-based 

predictions do not fully correspond with eye tracking data, 

because there are structural and qualitative differences.  

There is a trade-off between the validity of the data and the 

insights it provides. A carefully planned and executed eye-

tracking study results in highly valid data, as it directly 

measures the gaze of the human operator. In contrast the 

validity of model predictions strongly depends on the level of 

detail of the model and the process of assessing free 

parameters. As described in Section 2.1 documenting the 

process of parameter assessment in a reproducible way is 

difficult. However, eye tracking studies also have some 

shortcomings concerning the interpretation of the data: 

1. Eye-tracking studies measure focal visual attention. 

With eye trackers it is very difficult to measure the 

mental focus of attention or information that is 

perceived peripherally. This typically requires 

special study set-ups, like occluding parts of the 

visual field [Land & Horwood (1995)]. Models on 

the other hand can capture these aspects. 

2. Eye-tracking studies explain where operators look 

at, but not why. Models on the other hand explain 

the causal relationship between the influencing 

factors and the distribution of attention. Models can 

furthermore distinguish the effect of different 

influencing factors, like saliency or information 

value. 

We claim that for many applications the model-based 

approach is better suited for explorative analysis and for 

developing hypothesis of what drives the allocation of 

attention in specific scenarios. This helps for example to 

explore the level of shared understanding within an HMI 

design team or between the designers of an HMI and the 

domain experts respectively the HMI users.  

The Human Efficiency Evaluator (HEE) is a software tool 

designed to support HMI developers with a more objective 

view on human-system interaction in an early design phase. It 

supports a model-based attention prediction method, and 

helps to document the assessment of free parameters. In prior 

experiments we have focused on input parameter validation 

[Feuerstack & Wortelen (2016)]. Therefore, this contribution 

is about applying the same tool for a model-based exploration 

to reveal differences in understandings between a group of 

collaborating HMI designers or between HMI designers and 

their targeted audience: the operators. In the following 

sections we describe the tool and report about the two use 

cases. 

 

3. HUMAN EFFICIENCY EVALUATOR 

The Human Efficiency Evaluator (HEE) has been designed to 

be applied in an early HMI design phase, in which design 

work focuses on pen- and paper prototypes or early design 

sketches. The tool implements a structured process for 

attention modeling. As initial input the HEE requires a set of 

images, each depicting a design variant of the HMI 

embedded into the environment (e.g. a car) and in the same 

specific situations as the other variants. Additionally, a set of 

user tasks relevant for monitoring the HMI is pre-set.   

In the first step of the process all AOIs relevant for the 

operator tasks are to be identified by the HEE user. An AOI 

is a location within the HMI or in its surrounding 

environment, from which information can be perceived by 

the operator. For this step one has to carefully distinguish 

between information and the source of the information. 

Information that is tightly connected to the specific point in 

time should be abstracted to their source location by 

answering: “Where do I usually expect these information to 

appear?”.  

Figure 1 shows the first screen mask of the HEE web 

application, which in this example displays a design sketch of 

an electronic sea chart with already several AOIs identified 

by a domain expert (a ship master in this case). The boxes 

above the HMI sketch list three main monitoring tasks of the 

ship master. For that he should identify relevant AOIs. 

In the second step the expectancy coefficient for each AOI is 

calculated using the least integer ordinal value heuristic 

[Wickens et al. (2001)]: The user has to sort (“rank”) all 

previously identified AOIs. Those AOIs are put on top of the 

list for which the user expects to perceive new information 

most frequently. This is done by roughly ordering the AOIs 

using a drag- and-drop technique. The HEE transforms this 

list into a set of “greater than” relations like shown by Fig. 2. 

More relations can then be interactively added in a 

subsequent step, specifically to express differences in the 

expected frequency of information for the same AOI in the 

Fig. 1. HEE AOI identification step of the domain expert for the maritime 

user case: three user tasks are depicted on top.  



 

 

     

 

different design variants. To support this step, additional 

relations can be created and AOIs can be placed into the left 

or right hand side of a new relation using drag-and-drop. The 

HEE highlights the currently selected AOI graphically on the 

design and also checks and highlights contradicting relations.  

In the third step, the operator tasks are ordered by their 

importance, with the most important tasks on top of the list. 

Fig. 3 shows the corresponding screen mask of the HEE: 

tasks listed on the right have already been ranked.  

Finally, in the fourth step, the relevance of each AOI for each 

of the operator tasks is determined by completing a relevance 

matrix, which lists all identified AOIs as rows and the user 

tasks as columns. The HEE user has to decide if the 

corresponding AOI is either “required”, “helpful” or “not 

relevant” for the corresponding task. Fig. 4 depicts the screen 

mask of the HEE for the relevance determination. 

Based on this collected data, predictions of visual attention 

distributions and reaction times to unexpected events can be 

calculated [Wortelen & Feuerstack (2016)]. An HEE project 

can be completed independently by several HEE users 

 

Fig. 4. Excerpt from the relevance matrix. AOIs are listed by rows, tasks are identified by columns. A colour scheme highlights the user’s choices between 

“necessary” (green), “helpful” (yellow) or “not relevant (blue). 

 

Fig. 2. After roughly sorting the AOIs, greater-than relations are automatically created (to the right). New relations can be created by dragging the relevant 

AOIs from the list depicted in the center into a new relation at the right. 

 

Fig. 3. Each tasks of the unordered task list at the left need to be ordered by 

dragging it into the list on the right. 



 

 

     

 

resulting in several attention models for the same design. 

Recording multiple models from multiple users and 

averaging the results improves model validity, because 

random individual errors are cancelled out. The 

reproducibility of the modelling process is enhanced by the 

HEE. The HEE project describes the entire study setup and 

the process of data acquisition. The recorded data describes 

the free parameters of the attention model that were identified 

by the HEE users during this process.  Because the study 

description and the recorded data are stored in a structured 

data format, the documentation of the modelling process is 

quite easy.  

Besides computing predictions as done by others (c.f. sec. 2), 

such model-based data gained by several experts can also be 

explored to discover reasons and hidden effects, which will 

be discussed in detail in the upcoming sections. 

4. MODEL EXPLORATION 

There are many methods for eliciting knowledge for 

designing interactive systems. The user-centered design 

(UCD) process [ISO (2010)] for instance identifies a set of 

subsequent phases including specifying context and 

requirements, prototyping designs, and finally evaluating 

them with users. Popular UCD methods include participatory 

design [Schuler & Namioka (1993)] that involves 

stakeholders to ensure that the design result meet their needs, 

or interviews, focus groups or questionnaires to identify user-

needs and to better understand the requirements. 

The better the domain, the user tasks, and the users’ 

knowledge is understood by the designer, the higher is the 

chance that the HMI design matches users’ needs. For most 

of these methods objectivity is hard to maintain, because they 

collect subjective data from experts. Some require 

moderation or other forms of unstructured or semi-structured 

interviews, which impairs reproducibility. Contrarily, formal 

questionnaires or pre-structured interviews offer the chance 

of result-reproducibility but also limit the chance to explore 

something not known beforehand. 

There are other methods available, such as ecological 

interface design (EID) [Vicente & Rasmussen (1992)] for 

instance, which does not focus on the user, but on the work-

domain from that the constraints of the environment and the 

objectives of the domain are derived. Approaches 

concentrating on the work domain have the advantage that 

they can also discover and consider situations that are 

unexpected by the users and aim at improving human 

performance by reducing their workload [Vicente & 

Rasmussen (1992)]. Recent approaches, like Konect for 

instance specifically focus on optimizing designs for fast and 

correct visual perception [Ostendorp et al. (2016)]. Konect 

embeds heuristics and basic research on pre-attention into a 

design method to guide design of visual user interfaces that 

are optimized for fast and correct perception.  

Model exploration with the HEE is very rigid in the structure 

and for the inputs that are collected from the users of the tool. 

The objective is to collect subjective data from experts in a 

highly reproducible way.  

While most methods require experience and training to be 

successfully applied, the HEE does not require extensive 

training. Prior studies have shown that a short 12 minutes 

video tutorial1 is sufficient to enable novice users to model 

their monitoring behavior with the tool [Feuerstack et al. 

(2016), Feuerstack & Wortelen (2016)].  

We experimented in two different settings with model 

exploration: First, we applied the HEE to compare the view 

of an interaction designer with the one of a targeted user (a 

ship master) on three different abstract design sketches of an 

electronic chart display and information system (ECDIS). 

Second, we compared the view of six different HF experts on 

three different automotive HMI versions of a traffic light 

assistance system. 

4.1 Exploring Designer’s Perspective vs. User’s Perspective  

In the maritime domain Electronic Chart Display and 

Information Systems (ECDIS) are one of the main sources of 

information that are monitored to support vessel navigation. 

Often the complete passage is planned and inserted into the 

vessel navigations system prior to the trip and one of the 

main tasks of a ship pilot during the trip is to observe the own 

vessel and to monitor for other vessels and unexpected 

obstacles. Following a UCD process, an HMI designer had 

sketched three design alternatives for an improved ECDIS 

display.  

We asked the HMI designer to use the HEE and to model 

how he assumes that a ship master will monitor the three 

design variants. Thereafter, we presented and explained the 

design sketches to a ship master and asked him to model his 

monitoring behavior for each of the three designs. With this 

input we simulated the monitoring behavior for both experts 

and for each design and generated several comparative 

visualizations that we presented the HMI designer for 

exploration [Feuerstack & Wortelen (2015)]. 

Fig. 5 depicts such a set of comparative visualizations for one 

of the HMI designs. The design alternatives were specifically 

elaborated to support the ship master in a critical situation. 

Therefore, we chose a situation in that the own vessel 

(“ownship” of Fig. 5b+c) was required to pass through a very 

narrow sea strait with oncoming traffic of two other vessels. 

The overall design idea of the depicted HMI variant of Fig. 5 

(and all subsequent figures of this section) was to highlight 

predicted vessel routes depicted by dashed yellow lines to 

improve a ship master’s anticipation capabilities of critical 

situations. The yellow vessel symbols therefor identify future 

vessel positions. Different to what a non-expert in maritime 

operations would expect, ECDIS systems color shippable 

water in black and shallow water conditions (that need to be 

prevented) in blue. Circles with a central dot represent 

lighthouses, which identify shallow water in this situation. 

                                                 
1 http://lnk.multi-access.de/kogsys17, last checked 03/09/17 

http://lnk.multi-access.de/kogsys17


 

 

     

 

Fig. 5 depicts such a set of comparative visualizations for one 

of the HMI designs. The design alternatives were specifically 

elaborated to support the ship master in a critical situation. 

Therefore, we chose a situation in that the own vessel 

(“ownship” of Fig. 5b+c) was required to pass through a very 

narrow sea strait with oncoming traffic of two other vessels. 

The overall design idea of the depicted HMI variant of Fig. 5 

(and all subsequent figures of this section) was to highlight 

predicted vessel routes depicted by dashed yellow lines to 

improve a ship master’s anticipation capabilities of critical 

situations. The yellow vessel symbols therefor identify future 

vessel positions. Different to what a non-expert in maritime 

operations would expect, ECDIS systems color shippable 

water in black and shallow water conditions (that need to be 

prevented) in blue. Circles with a central dot represent 

lighthouses, which identify shallow water in this situation. 

Fig. 5b+c depict the heatmap visualizations, which were 

generated based on simulating the monitoring behavior of the 

HMI designer (b) and the ship master (c). To ease comparing 

both, the HEE also generates images with labeled AOIs (c.f. 

Fig. 5a). Comparing both heatmaps, it is evident that the 

designer assumed that the ship master spends much more 

attention on monitoring the position of his own ship than he 

actually intents to do. Further on, the ship master identified 

the direction and not the position of the own ship as a 

monitoring target and intends to invest much more time on 

observing the future positions of the vessels and potential 

overlapping routes than expected by the designer. 

It can be further observed already from the heatmap 

visualizations that the ship master intends to monitor more 

areas than it was assumed by the designer. By visualizing just 

the identified AOIs as boxes, like shown by Fig. 6a for the 

designer and Fig. 6b for the ship master, this observation 

becomes even more evident: The ship master distributes his 

visual attention on the entire map, but focusses the attention 

around the area where the vessels have the closest point of 

approach. Contrarily, the designer assumed that the focus of 

the shipmaster is much more centered on the vessels route 

predictions. The grey level of both visualizations reflects the 

expectancy level. Those areas with a darker grey level 

identify areas with a high expectancy of being a source for 

retrieving often new information. Both expect to perceive 

frequent new information from the situation around the 

narrow sea passage, but interestingly the designer seem to 

overestimate the amount of new information that a ship 

master expects close to the own vessel. 

One can also explore and compare which AOIs are assumed 

to capture most of the visual attention. Such a visualization is 

depicted by Fig. 7a for the designer and by Fig. 7b for the 

ship master. By comparing both, one can observe that the 

designer seems to overestimate the impact of displaying the 

planned own ship route and the route predictions of the other 

vessels. The former seems not relevant for the ship master 

whereas the latter are essentially relevant for observing a 

route crossing and the vessel that approaches next.  

Finally, differences between individual AOIs can be further 

explored. Therefore the HEE calculates pairs of the 

geometrically most similar AOIs between the ones from the 

designer and the ship master. The geometrical similarity is 

calculated by the root integrated squared distance, which is 

sensitive to differences in size and position of two rectangles. 

 

Fig. 5. Heat map visualization. a) The boundaries of the operator’s AOIs (thin gray lines) used as reference for the interpretation of the operator’s heatmap. 

Shown is only a small, zoomed-in part of the entire sea chart for better readability. AOI names are in German, because the operator and HMI designer were 

German; The heat map resulting from the simulation of the cognitive model defined by b) the HMI designer and  c) the operator. Simulation was performed by 

automatically creating a cognitive model in CASCaS using the designer’s and operator’s input data [Wortelen et al. (2013)]. 

 

 

Fig. 6. Colorization of AOIs based on expectancy coefficients 

defined by (a) the HMI designer and (b) the operator. 



 

 

     

 

Based on this calculation the HEE can display: (1) The most 

similar AOI pairs with high differences in either expectancy, 

value or even both, and (2) AOIs defined by the HMI 

designer, for which only bad matches can be found in the 

AOIs of the ship master (and vice versa). 

Fig. 8 depicts an example for (1) and compares the AOI that 

both have identified as the “narrow passage”/”high traffic 

area”. The respective expectancy and value ratings from the 

designer (blue) and the shipmaster (green) are shown below 

the figure together with the total visual attention that each 

intends to spend of monitoring the AOI. For this AOI the 

designer underestimated the amount of new information that 

this AOI provides for the ship master.  

Also bad matches (2) can give interesting insights by 

supporting the designer to discover unconsidered AOIs, 

which are in fact relevant for an operator. Fig. 9 shows such 

an example: For the AOI that was named “possibility of 

crossing traffic” by the shipmaster the best match that was 

found is pretty bad. It is a light house and has nothing to do 

with the AOI defined by the ship master. The existence of 

crossing traffic was not considered by the designer as its 

identification requires experience in analyzing the topology 

of the visualized map (the ship master inferred a close but 

non-displayed port in this case). 

4.2 Exploring a Design Group’s Understanding of an HMI 

Instead of confronting a designer with the perspective of a 

later user another use case of the HEE is to explore the 

potential different understandings within a team of designers 

working on HMI design proposals. In discussions within the 

team quite voices can be overheard easily and in bigger teams 

participants might also talking past each other without even 

noticing. 

The HEE can be applied to discover different perspectives 

between the designers enabling them to align each other and 

to discover potential inconsistent views. In the following we 

present a use case in that an automotive HMI was being 

evaluated by a total of six Human Factors and Design 

Experts.  

Fig. 10 depicts three different visual HMI variants of an 

Urban Automatic Cruise Control (ACC) system, which was 

designed to support drivers to better understand their 

vehicles’ automatic speed adjustments [Kettwich et al. 

(2016)]. Equipped with an Urban ACC and vehicle-to-

infrastructure communication the vehicle is able to adapt its 

maneuvers with regard to the traffic light signal status and its 

 

Fig. 8. Direct comparison of two AOIs with high geometric similarity: from 

designer (green) and ship master (blue). 

 

Fig. 9. Direct comparison of two AOIs with very low geometric 

similarity: from designer (green) and ship master (blue). 

 

Fig. 7. AOI that attract 59% of the attention as predicted by (a) the 

designer and (b) the ship master. 



 

 

     

 

future phase change to increase traffic safety and traffic flow 

efficiency. There are situations in that the vehicle reacts to a 

forecast, which might be in discrepancy with the current 

environmental situation (e.g. traffic light “green”, vehicle is 

decelerating) and the three visual HMI variants were aimed at 

improving a drivers understanding of the Urban ACC 

behavior.  

The first HMI concept (HMI 1) has the lowest information 

content. This design concept only gives the driver 

information about the success/failure of the communication 

between the vehicle and the corresponding traffic light. This 

is illustrated through a traffic light icon with radio waves. 

The other two design concepts have higher information 

content but different approaches to support the driver in 

comprehending and monitoring the current automation 

maneuver of the ACC. The second design concept (HMI 2) 

depicts the actual traffic light signal status. Additionally, a 

countdown of the remaining time of the ongoing status of the 

traffic light signal is shown. The third design concept (HMI 

3) shows the status of the traffic light signal, when passing 

the corresponding intersection. 

For the model-based analysis of attention allocation, we 

selected a specific situation that is relevant for Urban ACC 

systems: the car is approaching a traffic light, while the driver 

cannot see the traffic light, but a traffic sign announces the 

upcoming traffic light (see Fig. 11).  Four tasks that represent 

typical urban traffic driver tasks have been predefined to be 

considered for modeling the visual attention with the tool: 

“Observe Road Ahead”, “Observe Rear Traffic”, “Control 

Lateral Position”, and “Control Speed”. Due to the use of the 

Urban ACC “Control Speed” is mainly the supervision of the 

ACC functionality 

The six HF experts applied the HEE process independently 

from each other on their own computers and submitted the 

data thereafter to us for analysis. Fig. 11 depicts in green 

boxes the AOIs identified by all subjects for the HMI3 

variant. One can see that they identified mostly the same 

areas. Heatmaps with visual attention predictions can then be 

calculated with the HEE. Fig. 12 for instance visualizes shifts 

of visual attention between the HMI variants based on data 

gained by one HF expert. If there is a shift in attention 

dependent on the HMI variant, it is of interest to analyze, 

whether it is predicted by all experts and where the attention 

is drawn from. 

To explore the differences between the HF experts by their 

value and expectancy ratings, we manually classified all 

AOIs with three raters into 15 classes (with a high inter-rater 

reliability: Fleiss’  = 0.88). In general, all ratings for the 

tasks importance and expectancy rankings and also for the 

relevance matrix from all HF experts were highly concordant 

(Kendall's coefficient of concordance Wt >0.82; p<0.01) for 

those AOIs that all HF experts have identified: The forward 

view, the Urban ACC HMI, and the speedometer.   

The left graph of Fig. 13 shows the mean percentage dwell 

time (PDT) for the ACC HMI and the forward view. We 

found a significant difference of predicted attention 

distribution between the HMI variants for the Urban ACC 

display (F(2,10) = 8.041, p = 0.00828). Subsequent t-tests 

indicated, that the mean PDT for HMI 1 (M=0.069, σ=0.067) 

was significantly different to HMI 3 (M=0.106, σ=0.072, 

p=0.002) and also to HMI 2 (M=0.113, σ=0.063), but for 

HMI 2 only with marginal evidence (p=0.052). Attention is a 

limited resource. The data indicate that the increased amount 

of attention to the Urban ACC in HMI 2 and HMI 3 is mostly 

drawn from the forward view (F(2,6)=7.054, p=0.027). 

The same kind of PDT analysis can also be done with data 

from eye-tracking studies. But at this point the opportunities 

of the model-based approach emerge. The model-based 

approach of the HEE allows inspecting the simulation models 

to learn about causes for the observed shifts in attention 

between the HMI variants and to identify whether all experts 

assume the same causes for shifts in attention. 

By looking at the expectancy, relevance and task importance 

coefficients one can explore causes for this effect. For this 

 

Fig. 10  Display structures of three HMI variants; HMI1: Pictogram of a traffic light with radio waves; HMI2: Current traffic light signal status with 

countdown; HMI3: Traffic light signal status when arriving and passing the corresponding intersection  

 

Fig.11 Sign that announces upcoming traffic light. Green boxes show areas 

of interest identified by HF experts. 

 

Fig.12 Visual attention prediction for the HM1-3 variants of one HF expert. 

HMI1 HMI2 HMI3 



 

 

     

 

case, actually neither the task importance parameters, nor the 

relevance matrix, but the difference in the amount of 

expected information from the Urban ACC display explained 

the effect. The standard deviation of expectancy parameters 

for the Urban ACC display (HMI 1=0.067, HMI 2=0.068, 

HMI 3=0.076) was by far higher than for any other AOI. The 

right graph of Fig. 13 depicts the normalized expectancy 

parameters for the Urban ACC HMI of all six HF experts. It 

can be observed that (1) they all expect a different amount of 

new information from each HMI variant and (2) also their 

opinions  differ: All expect the least information from HMI 1, 

but experts S2 and S3 expect the most information from HMI 

3, while all other experts expect it from HMI 2. Searching for 

such patterns can be extremely helpful information for an 

HMI designer to check whether the own expectation about 

the HMI design matches with the expectations of the others. 

Such inconsistencies can be a starting point for discussion in 

the design team. 

Similar patterns can be found in the relevance definition 

(even though experts rated highly concordant as we already 

mentioned earlier): As depicted in Fig. 14 the HF experts 

disagreed about the relevance of the HMI variants for the 

“Control Speed” task, which is in fact an interesting aspect to 

initiate a discussion between the experts. 

Finally, for this use case the experts generally agreed about 

that the “Control Lateral Position” and “Observe Road 

Ahead” tasks are more important than the “Control Speed” 

and “Observe Rear Traffic” tasks. 

5. CONCLUSIONS 

The Human Efficiency Evaluator can be used in a very 

efficient manner to generate monitoring behaviour 

predictions and can be applied complementary to eye 

tracking studies. Whereas the latter provides an objective 

measurement but requires a working prototype, our approach 

benefits from the ability of humans to reflect about their 

mental model of a situation or design based on something as 

simple as a sketch or a photo [Feuerstack & Wortelen 

(2015)]. 

Whereas eye tracking studies typically require a physical or 

simulated functional HMI prototype and usually depend on 

serial subject processing to collect monitoring behaviour 

data, the HEE can be used remotely, in parallel sessions, 

without any specific hardware, with only minor training, and 

can also be applied to analyse early designs for that no 

functional prototype is available. The tool aggregates the 

collected data, automatically generates a cognitive model that 

simulates monitoring [Feuerstack & Wortelen (2016)] of the 

HMI designs, and results in visualizations that summarize the 

simulation data for further analysis.  Eye-tracking data per se 

gives no explanation of the behaviour recorded, whereas a 

model based simulation can be inspected e.g. for hidden 

effects and reasons for the simulated behaviour. 

We demonstrated by two exemplary use cases how these 

visualizations can support HMI designers and HF experts in 

analysing their HMI designs and exploring the targeted users 

monitoring behaviour. 

In a maritime use case we generated comparative 

visualizations of two monitoring behaviour predictions. One 

prediction was generated by the HMI designer who designed 

the HMI and the second prediction was generated by a ship 

master – the targeted user. It turned out that the comparative 

visualizations helped the HMI designer to view the design 

with the eyes of the ship master. The designer afterwards 

better understood what the ship master focuses on the most 

and why. 

In a second use case we evaluated the impact of three design 

variants of an automotive HMI assistance system [Feuerstack 

et al. (2016)] for the monitoring behaviour with six HF 

experts. This study revealed that between experts there are 

differences in how they expect the car drivers to use and 

monitor the designs. 

The HEE fosters a very fast and easy to use data capturing 

and monitoring behaviour modelling even for non-experts in 

cognitive modelling. In the studies we performed, none of the 

subjects required more than a total of 90 minutes to 

understand the tool usage (by watching a 15 minutes video 

tutorial), and to end up with a monitoring behaviour 

prediction.  

Optimizing HMIs for efficient monitoring reduces reaction 

time on unexpected events and improves situation awareness 

 

Fig. 13. Left: percentage dwell time. Right: normalized expectancy 

parameters of ACC HMI for all HF Experts 

 

Fig.14 Relevance ratings of the HF experts for each HMI variant for the 

ControlSpeed  driver task. 



 

 

     

 

of the user. Both are very relevant especially for safety-

critical application. Comparative visualizations of monitoring 

behaviour can already discover misunderstandings and 

misleading assumptions between the HMI designers in the 

HMI development team or between HMI designer and the 

end user in an early design phase. 
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